Menu Close

Question-186762




Question Number 186762 by ajfour last updated on 09/Feb/23
Commented by ajfour last updated on 09/Feb/23
What minimum length to walk   to start from home with empty  bucket go get water from well n  water the tree.
$${What}\:{minimum}\:{length}\:{to}\:{walk}\: \\ $$$${to}\:{start}\:{from}\:{home}\:{with}\:{empty} \\ $$$${bucket}\:{go}\:{get}\:{water}\:{from}\:{well}\:{n} \\ $$$${water}\:{the}\:{tree}. \\ $$
Commented by mr W last updated on 10/Feb/23
Commented by mr W last updated on 11/Feb/23
for a given path length AC+CB the  locus of point C is an ellipse with  focii at A and B. to find the shortest  length of path from A to B via well,   we just need to find the ellipse which  touches the circle (well).
$${for}\:{a}\:{given}\:{path}\:{length}\:{AC}+{CB}\:{the} \\ $$$${locus}\:{of}\:{point}\:{C}\:{is}\:{an}\:{ellipse}\:{with} \\ $$$${focii}\:{at}\:{A}\:{and}\:{B}.\:{to}\:{find}\:{the}\:{shortest} \\ $$$${length}\:{of}\:{path}\:{from}\:{A}\:{to}\:{B}\:{via}\:{well},\: \\ $$$${we}\:{just}\:{need}\:{to}\:{find}\:{the}\:{ellipse}\:{which} \\ $$$${touches}\:{the}\:{circle}\:\left({well}\right). \\ $$
Commented by mr W last updated on 11/Feb/23
Answered by ajfour last updated on 10/Feb/23
w={(a+r−rcos θ)^2 +r^2 sin^2 θ}^(1/2)   +{(b+r−rcos φ)^2 +r^2 sin^2 φ}^(1/2)   +r{(π/2)−(φ+θ)}  =Σ(√((a+2rsin^2  (θ/2))^2 +4r^2 sin^2 (θ/2)cos^2 (θ/2)))        +r{(π/2)−(φ+θ)}  =Σ(√(a^2 +4r(a+r)sin^2 (θ/2)))+r{(π/2)−(φ+θ)}  =Σ(√(a^2 +2r(a+r)(1−cos θ)))+r{(π/2)−(φ+θ)}  (∂w/∂θ)=((2r(a+r)sin θ)/( (√N_θ )))−r=0  ⇒  (√N_θ )=2(a+r)sin θ   (∂w/∂φ)=0  ⇒  (√N_φ )=2(a+r)sin φ  w=2(a+r)(sin θ−sin φ)+r{(π/2)−(φ+θ)}    further  4(a+r)^2 sin^2 θ=a^2 +2r(a+r)(1−cos θ)  ⇒ 4(a+r)^2 =4(a+r)^2 z^2 −2r(a+r)z        +a^2 +2r(a+r)  ⇒  z^2 −((rz)/(2(a+r)))+(1/4)+(r^2 /(4(a+r)^2 ))=1  z=(r/(4(a+r)))±(√((r^2 /(16(a+r)^2 ))−(r^2 /(4(a+r)^2 ))+1−(1/4)))  cos θ=(r/(4(a+r))){1±(√((3/4)[((a/r)+1)^2 −1]))}  similarly cos φ. Hence w.
$${w}=\left\{\left({a}+{r}−{r}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\right\}^{\mathrm{1}/\mathrm{2}} \\ $$$$+\left\{\left({b}+{r}−{r}\mathrm{cos}\:\phi\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \phi\right\}^{\mathrm{1}/\mathrm{2}} \\ $$$$+{r}\left\{\frac{\pi}{\mathrm{2}}−\left(\phi+\theta\right)\right\} \\ $$$$=\Sigma\sqrt{\left({a}+\mathrm{2}{r}\mathrm{sin}\:^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cos}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:+{r}\left\{\frac{\pi}{\mathrm{2}}−\left(\phi+\theta\right)\right\} \\ $$$$=\Sigma\sqrt{{a}^{\mathrm{2}} +\mathrm{4}{r}\left({a}+{r}\right)\mathrm{sin}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}}+{r}\left\{\frac{\pi}{\mathrm{2}}−\left(\phi+\theta\right)\right\} \\ $$$$=\Sigma\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{r}\left({a}+{r}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}+{r}\left\{\frac{\pi}{\mathrm{2}}−\left(\phi+\theta\right)\right\} \\ $$$$\frac{\partial{w}}{\partial\theta}=\frac{\mathrm{2}{r}\left({a}+{r}\right)\mathrm{sin}\:\theta}{\:\sqrt{{N}_{\theta} }}−{r}=\mathrm{0} \\ $$$$\Rightarrow\:\:\sqrt{{N}_{\theta} }=\mathrm{2}\left({a}+{r}\right)\mathrm{sin}\:\theta \\ $$$$\:\frac{\partial{w}}{\partial\phi}=\mathrm{0}\:\:\Rightarrow\:\:\sqrt{{N}_{\phi} }=\mathrm{2}\left({a}+{r}\right)\mathrm{sin}\:\phi \\ $$$${w}=\mathrm{2}\left({a}+{r}\right)\left(\mathrm{sin}\:\theta−\mathrm{sin}\:\phi\right)+{r}\left\{\frac{\pi}{\mathrm{2}}−\left(\phi+\theta\right)\right\} \\ $$$$\:\:{further} \\ $$$$\mathrm{4}\left({a}+{r}\right)^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta={a}^{\mathrm{2}} +\mathrm{2}{r}\left({a}+{r}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\:\mathrm{4}\left({a}+{r}\right)^{\mathrm{2}} =\mathrm{4}\left({a}+{r}\right)^{\mathrm{2}} {z}^{\mathrm{2}} −\mathrm{2}{r}\left({a}+{r}\right){z} \\ $$$$\:\:\:\:\:\:+{a}^{\mathrm{2}} +\mathrm{2}{r}\left({a}+{r}\right) \\ $$$$\Rightarrow\:\:{z}^{\mathrm{2}} −\frac{{rz}}{\mathrm{2}\left({a}+{r}\right)}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{{r}^{\mathrm{2}} }{\mathrm{4}\left({a}+{r}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$${z}=\frac{{r}}{\mathrm{4}\left({a}+{r}\right)}\pm\sqrt{\frac{{r}^{\mathrm{2}} }{\mathrm{16}\left({a}+{r}\right)^{\mathrm{2}} }−\frac{{r}^{\mathrm{2}} }{\mathrm{4}\left({a}+{r}\right)^{\mathrm{2}} }+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\mathrm{cos}\:\theta=\frac{{r}}{\mathrm{4}\left({a}+{r}\right)}\left\{\mathrm{1}\pm\sqrt{\frac{\mathrm{3}}{\mathrm{4}}\left[\left(\frac{{a}}{{r}}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right]}\right\} \\ $$$${similarly}\:\mathrm{cos}\:\phi.\:{Hence}\:{w}. \\ $$$$ \\ $$
Commented by mr W last updated on 10/Feb/23
Commented by mr W last updated on 10/Feb/23
i think only in case 1 one may need  to walk around the well. in any other  case one should not walk around the   well to take the shortest way.
$${i}\:{think}\:{only}\:{in}\:{case}\:\mathrm{1}\:{one}\:{may}\:{need} \\ $$$${to}\:{walk}\:{around}\:{the}\:{well}.\:{in}\:{any}\:{other} \\ $$$${case}\:{one}\:{should}\:{not}\:{walk}\:{around}\:{the}\: \\ $$$${well}\:{to}\:{take}\:{the}\:{shortest}\:{way}. \\ $$
Commented by ajfour last updated on 10/Feb/23
yeah brilliant short interpretation!
$${yeah}\:{brilliant}\:{short}\:{interpretation}! \\ $$
Answered by mr W last updated on 10/Feb/23
Commented by mr W last updated on 11/Feb/23
case 2: ((ab)/( (√(a^2 +b^2 ))))≥r  (assume b≥a)  eqn. of ellipse:  (x^2 /p^2 )+(y^2 /q^2 )=1  AB=c=(√(a^2 +b^2 ))  (c/2)=(√(p^2 −q^2 ))  ⇒p^2 −q^2 =((a^2 +b^2 )/4)   ...(i)  x_A =−x_B =(c/2)  x_D =(c/2)−(a^2 /c)  y_D =((ab)/c)  say C(p cos θ, q sin θ)  tan ϕ=((q cos θ)/(p sin θ))=(q/(p tan θ))  (c/2)−(a^2 /c)=p cos θ+r sin ϕ=p cos θ+((rq)/( (√(p^2  tan^2  θ+q^2 ))))  ((b^2 −a^2 )/(2(√(a^2 +b^2 ))))=p cos θ+((rq)/( (√(p^2  tan^2  θ+q^2 ))))  let m=tan θ  ⇒((b^2 −a^2 )/(2(√(a^2 +b^2 ))))=(p/( (√(m^2 +1))))+((rq)/( (√(p^2 m^2 +q^2 ))))   ...(ii)  ((ab)/c)=q sin θ+r cos ϕ=q sin θ+((rp tan θ)/( (√(p^2  tan^2  θ+q^2 ))))  ⇒((ab)/( (√(a^2 +b^2 ))))=m((q/( (√(m^2 +1))))+((rp)/( (√(p^2 m^2 +q^2 )))))   ...(iii)  we can solve (i) to (iii) for p,q,m.  the length of way AC+CB=L=2p  example:  a=4, b=6, r=1.5  ⇒p≈3.8645, q≈1.9344  ⇒shortest way L=2p≈7.7290
$$\boldsymbol{{case}}\:\mathrm{2}:\:\frac{\boldsymbol{{ab}}}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }}\geqslant\boldsymbol{{r}} \\ $$$$\left({assume}\:{b}\geqslant{a}\right) \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{p}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{q}^{\mathrm{2}} }=\mathrm{1} \\ $$$${AB}={c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\frac{{c}}{\mathrm{2}}=\sqrt{{p}^{\mathrm{2}} −{q}^{\mathrm{2}} } \\ $$$$\Rightarrow{p}^{\mathrm{2}} −{q}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{4}}\:\:\:…\left({i}\right) \\ $$$${x}_{{A}} =−{x}_{{B}} =\frac{{c}}{\mathrm{2}} \\ $$$${x}_{{D}} =\frac{{c}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{{c}} \\ $$$${y}_{{D}} =\frac{{ab}}{{c}} \\ $$$${say}\:{C}\left({p}\:\mathrm{cos}\:\theta,\:{q}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{tan}\:\varphi=\frac{{q}\:\mathrm{cos}\:\theta}{{p}\:\mathrm{sin}\:\theta}=\frac{{q}}{{p}\:\mathrm{tan}\:\theta} \\ $$$$\frac{{c}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{{c}}={p}\:\mathrm{cos}\:\theta+{r}\:\mathrm{sin}\:\varphi={p}\:\mathrm{cos}\:\theta+\frac{{rq}}{\:\sqrt{{p}^{\mathrm{2}} \:\mathrm{tan}^{\mathrm{2}} \:\theta+{q}^{\mathrm{2}} }} \\ $$$$\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}={p}\:\mathrm{cos}\:\theta+\frac{{rq}}{\:\sqrt{{p}^{\mathrm{2}} \:\mathrm{tan}^{\mathrm{2}} \:\theta+{q}^{\mathrm{2}} }} \\ $$$${let}\:{m}=\mathrm{tan}\:\theta \\ $$$$\Rightarrow\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\frac{{p}}{\:\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}+\frac{{rq}}{\:\sqrt{{p}^{\mathrm{2}} {m}^{\mathrm{2}} +{q}^{\mathrm{2}} }}\:\:\:…\left({ii}\right) \\ $$$$\frac{{ab}}{{c}}={q}\:\mathrm{sin}\:\theta+{r}\:\mathrm{cos}\:\varphi={q}\:\mathrm{sin}\:\theta+\frac{{rp}\:\mathrm{tan}\:\theta}{\:\sqrt{{p}^{\mathrm{2}} \:\mathrm{tan}^{\mathrm{2}} \:\theta+{q}^{\mathrm{2}} }} \\ $$$$\Rightarrow\frac{{ab}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}={m}\left(\frac{{q}}{\:\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}}+\frac{{rp}}{\:\sqrt{{p}^{\mathrm{2}} {m}^{\mathrm{2}} +{q}^{\mathrm{2}} }}\right)\:\:\:…\left({iii}\right) \\ $$$${we}\:{can}\:{solve}\:\left({i}\right)\:{to}\:\left({iii}\right)\:{for}\:{p},{q},{m}. \\ $$$${the}\:{length}\:{of}\:{way}\:{AC}+{CB}={L}=\mathrm{2}{p} \\ $$$$\underline{{example}:} \\ $$$${a}=\mathrm{4},\:{b}=\mathrm{6},\:{r}=\mathrm{1}.\mathrm{5} \\ $$$$\Rightarrow{p}\approx\mathrm{3}.\mathrm{8645},\:{q}\approx\mathrm{1}.\mathrm{9344} \\ $$$$\Rightarrow{shortest}\:{way}\:{L}=\mathrm{2}{p}\approx\mathrm{7}.\mathrm{7290} \\ $$
Commented by mr W last updated on 11/Feb/23
Answered by mr W last updated on 11/Feb/23
Commented by mr W last updated on 11/Feb/23
case 1: ((ab)/( (√(a^2 +b^2 ))))<r  AC=(√(a^2 +r^2 −2ar cos θ))  CD^(⌢) =r((π/2)−θ−ϕ)  DB=(√(b^2 +r^2 −2br cos ϕ))  L=(√(a^2 +r^2 −2ar sin θ))+(√(b^2 +r^2 −2br sin ϕ))+r((π/2)−θ−ϕ)  (∂L/∂θ)=((ar sin θ)/( (√(a^2 +r^2 −2ar cos θ))))−r=0  ⇒a^2 sin^2  θ=a^2 +r^2 −2ar cos θ  ⇒a^2 cos^2  θ−2ar cos θ+r^2 =0  ⇒(a cos θ−r)^2 =0  ⇒cos θ=(r/a)  similarly  ⇒cos ϕ=(r/b)  that means for shortest way AC   and BD tangent the circle respectively  as shown in the diagram above.  L_(min) =(√(a^2 −r^2 ))+(√(b^2 −r^2 ))+r((π/2)−cos^(−1) (r/a)−cos^(−1) (r/b))
$$\boldsymbol{{case}}\:\mathrm{1}:\:\frac{\boldsymbol{{ab}}}{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }}<\boldsymbol{{r}} \\ $$$${AC}=\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{cos}\:\theta} \\ $$$$\overset{\frown} {{CD}}={r}\left(\frac{\pi}{\mathrm{2}}−\theta−\varphi\right) \\ $$$${DB}=\sqrt{{b}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{br}\:\mathrm{cos}\:\varphi} \\ $$$${L}=\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{sin}\:\theta}+\sqrt{{b}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{br}\:\mathrm{sin}\:\varphi}+{r}\left(\frac{\pi}{\mathrm{2}}−\theta−\varphi\right) \\ $$$$\frac{\partial{L}}{\partial\theta}=\frac{{ar}\:\mathrm{sin}\:\theta}{\:\sqrt{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{cos}\:\theta}}−{r}=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta={a}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{ar}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}{ar}\:\mathrm{cos}\:\theta+{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\left({a}\:\mathrm{cos}\:\theta−{r}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{{r}}{{a}} \\ $$$${similarly} \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\frac{{r}}{{b}} \\ $$$${that}\:{means}\:{for}\:{shortest}\:{way}\:{AC}\: \\ $$$${and}\:{BD}\:{tangent}\:{the}\:{circle}\:{respectively} \\ $$$${as}\:{shown}\:{in}\:{the}\:{diagram}\:{above}. \\ $$$${L}_{{min}} =\sqrt{{a}^{\mathrm{2}} −{r}^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} −{r}^{\mathrm{2}} }+{r}\left(\frac{\pi}{\mathrm{2}}−\mathrm{cos}^{−\mathrm{1}} \frac{{r}}{{a}}−\mathrm{cos}^{−\mathrm{1}} \frac{{r}}{{b}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *