Menu Close

Question-186821




Question Number 186821 by yaslm last updated on 10/Feb/23
Answered by CElcedricjunior last updated on 11/Feb/23
★lim_(x;y→0) ((sin(x^2 +y^2 ))/(x^2 +y))■Moivre  posons x^2 +y^2 =A  qd:x;y−>0 A−>0  <=>lim_(A→0) ((sinA)/A)=1  ★lim_(x;y→∞) ((sin(x^2 +y^2 ))/(x^2 +y^2 ))≈lim_(x→∞) ((sinx)/x)=0  ★celebre cedric junior
$$\bigstar\underset{{x};\boldsymbol{{y}}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}}\blacksquare\boldsymbol{{M}}{oivre} \\ $$$$\boldsymbol{{posons}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{A}} \\ $$$$\boldsymbol{{qd}}:\boldsymbol{{x}};\boldsymbol{{y}}−>\mathrm{0}\:\boldsymbol{{A}}−>\mathrm{0} \\ $$$$<=>\underset{{A}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{sinA}}}{{A}}=\mathrm{1} \\ $$$$\bigstar\underset{{x};\boldsymbol{{y}}\rightarrow\infty} {\mathrm{lim}}\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\approx\underset{\boldsymbol{{x}}\rightarrow\infty} {\mathrm{lim}}\frac{\boldsymbol{{sinx}}}{\boldsymbol{{x}}}=\mathrm{0}\:\:\bigstar\boldsymbol{{celebre}}\:\boldsymbol{{cedric}}\:\boldsymbol{{junior}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *