Menu Close

Question-186830




Question Number 186830 by ajfour last updated on 11/Feb/23
Commented by ajfour last updated on 11/Feb/23
Find x.
$${Find}\:{x}. \\ $$
Answered by ajfour last updated on 11/Feb/23
((sin (φ−θ))/x^2 )=((sin φ)/x^3 )=((sin φ)/(x+c))  ⇒  x=((sin φ)/(sin (φ−θ)))  Also  ((sin φ)/(x+c))==((sin (φ−θ))/x^2 )  ⇒ ((sin φ)/(((sin φ)/(sin (φ−θ)))+c))=((sin^3 (φ−θ))/(sin^2 φ))  ⇒  sin^3 φ=sin^2 (φ−θ){sin φ+csin (φ−θ)}  .....
$$\frac{\mathrm{sin}\:\left(\phi−\theta\right)}{{x}^{\mathrm{2}} }=\frac{\mathrm{sin}\:\phi}{{x}^{\mathrm{3}} }=\frac{\mathrm{sin}\:\phi}{{x}+{c}} \\ $$$$\Rightarrow\:\:{x}=\frac{\mathrm{sin}\:\phi}{\mathrm{sin}\:\left(\phi−\theta\right)} \\ $$$${Also}\:\:\frac{\mathrm{sin}\:\phi}{{x}+{c}}==\frac{\mathrm{sin}\:\left(\phi−\theta\right)}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\frac{\mathrm{sin}\:\phi}{\frac{\mathrm{sin}\:\phi}{\mathrm{sin}\:\left(\phi−\theta\right)}+{c}}=\frac{\mathrm{sin}\:^{\mathrm{3}} \left(\phi−\theta\right)}{\mathrm{sin}\:^{\mathrm{2}} \phi} \\ $$$$\Rightarrow \\ $$$$\mathrm{sin}\:^{\mathrm{3}} \phi=\mathrm{sin}\:^{\mathrm{2}} \left(\phi−\theta\right)\left\{\mathrm{sin}\:\phi+{c}\mathrm{sin}\:\left(\phi−\theta\right)\right\} \\ $$$$….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *