Menu Close

Question-186951




Question Number 186951 by Humble last updated on 12/Feb/23
Answered by integralmagic last updated on 12/Feb/23
  =ln2
$$ \\ $$$$={ln}\mathrm{2} \\ $$
Answered by SEKRET last updated on 12/Feb/23
  (−1)∙Σ_(k=1) ^∞  (((−1)^k )/k)     =  ?    −1=a   f(a)= −Σ_(k=1) ^∞ (a^k /k)    f ′ (a)= −Σ_(k=1) ^∞  a^(k−1) = 1+a+a^2 +a^3 +...a^n +..   f ′ (a)= (1/(1−a))    c=0     f(a)=ln(1−a)    f(−1)= ln(2)
$$\:\:\left(−\mathrm{1}\right)\centerdot\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{k}}} }{\boldsymbol{\mathrm{k}}}\:\:\:\:\:=\:\:? \\ $$$$\:\:−\mathrm{1}=\boldsymbol{\mathrm{a}} \\ $$$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{a}}\right)=\:−\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{k}}} }{\boldsymbol{\mathrm{k}}}\: \\ $$$$\:\boldsymbol{\mathrm{f}}\:'\:\left(\boldsymbol{\mathrm{a}}\right)=\:−\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{k}}−\mathrm{1}} =\:\mathrm{1}+\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +…\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{n}}} +.. \\ $$$$\:\boldsymbol{\mathrm{f}}\:'\:\left(\boldsymbol{\mathrm{a}}\right)=\:\frac{\mathrm{1}}{\mathrm{1}−\boldsymbol{\mathrm{a}}}\:\:\:\:\boldsymbol{\mathrm{c}}=\mathrm{0}\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{a}}\right)=\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{a}}\right) \\ $$$$\:\:\boldsymbol{\mathrm{f}}\left(−\mathrm{1}\right)=\:\boldsymbol{\mathrm{ln}}\left(\mathrm{2}\right) \\ $$$$\: \\ $$
Commented by Humble last updated on 12/Feb/23
thank you, sir.
$${thank}\:{you},\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *