Menu Close

Question-186962




Question Number 186962 by mnjuly1970 last updated on 12/Feb/23
Answered by MJS_new last updated on 12/Feb/23
(√a)=p∧(√b)=q ⇒ p, q >0  ((1/p^2 )−q−1)((1/q^2 )−p−1)≥((25)/4)  q=1−p ⇒ 0<p<1  ((1/p^2 )−(1−p)−1)((1/((1−p)^2 ))−p−1)≥((25)/4)  (((p^2 −p−1)^2 )/(p(1−p)))≥((25)/4)  min (lhs) =((25)/4) at p=(1/2)
$$\sqrt{{a}}={p}\wedge\sqrt{{b}}={q}\:\Rightarrow\:{p},\:{q}\:>\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{p}^{\mathrm{2}} }−{q}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{{q}^{\mathrm{2}} }−{p}−\mathrm{1}\right)\geqslant\frac{\mathrm{25}}{\mathrm{4}} \\ $$$${q}=\mathrm{1}−{p}\:\Rightarrow\:\mathrm{0}<{p}<\mathrm{1} \\ $$$$\left(\frac{\mathrm{1}}{{p}^{\mathrm{2}} }−\left(\mathrm{1}−{p}\right)−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\left(\mathrm{1}−{p}\right)^{\mathrm{2}} }−{p}−\mathrm{1}\right)\geqslant\frac{\mathrm{25}}{\mathrm{4}} \\ $$$$\frac{\left({p}^{\mathrm{2}} −{p}−\mathrm{1}\right)^{\mathrm{2}} }{{p}\left(\mathrm{1}−{p}\right)}\geqslant\frac{\mathrm{25}}{\mathrm{4}} \\ $$$$\mathrm{min}\:\left(\mathrm{lhs}\right)\:=\frac{\mathrm{25}}{\mathrm{4}}\:\mathrm{at}\:{p}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *