Menu Close

Question-186996




Question Number 186996 by Mingma last updated on 12/Feb/23
Answered by aba last updated on 12/Feb/23
0<ln(3/2)<6/13
$$\mathrm{0}<\mathrm{ln}\left(\mathrm{3}/\mathrm{2}\right)<\mathrm{6}/\mathrm{13} \\ $$
Commented by MJS_new last updated on 12/Feb/23
you must show it without a calculator
$$\mathrm{you}\:\mathrm{must}\:\mathrm{show}\:\mathrm{it}\:\mathrm{without}\:\mathrm{a}\:\mathrm{calculator} \\ $$
Commented by aba last updated on 12/Feb/23
  ((13ln((3/2)))/6)=ln(((((3/2))^(13) ))^(1/6) )<ln(e)=1  ⇒ln((3/2))<(6/(13))
$$ \\ $$$$\frac{\mathrm{13ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{6}}=\mathrm{ln}\left(\sqrt[{\mathrm{6}}]{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{13}} }\right)<\mathrm{ln}\left(\mathrm{e}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)<\frac{\mathrm{6}}{\mathrm{13}} \\ $$
Commented by Frix last updated on 12/Feb/23
You seriously claim to see ((((3/2))^(13) ))^(1/6) <e  without calculating the value?!
$$\mathrm{You}\:\mathrm{seriously}\:\mathrm{claim}\:\mathrm{to}\:\mathrm{see}\:\sqrt[{\mathrm{6}}]{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{13}} }<\mathrm{e} \\ $$$$\mathrm{without}\:\mathrm{calculating}\:\mathrm{the}\:\mathrm{value}?! \\ $$
Commented by aba last updated on 12/Feb/23
∀n≥1 : (1+(1/n))^n ≤e  ((((3/2))^(13) ))^(1/6) =((3/2))^((13)/6) =(1+(1/2))^2 ×((3/2))^(1/6)                                      ≤((3/2))^(1/6) e                                     ≤(1.5)^(1/6) .e                                     <e
$$\forall\mathrm{n}\geqslant\mathrm{1}\::\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} \leqslant\mathrm{e} \\ $$$$\sqrt[{\mathrm{6}}]{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{13}} }=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{13}}{\mathrm{6}}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leqslant\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \mathrm{e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leqslant\left(\mathrm{1}.\mathrm{5}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} .\mathrm{e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:<\mathrm{e} \\ $$
Commented by Mingma last updated on 12/Feb/23
Good!
Commented by mr W last updated on 12/Feb/23
wrong sir!  from                                     ≤(1.5)^(1/6) .e  you can not get                                     <e  because (1.5)^(1/6) >1.
$${wrong}\:{sir}! \\ $$$${from} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leqslant\left(\mathrm{1}.\mathrm{5}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} .\mathrm{e} \\ $$$${you}\:{can}\:{not}\:{get} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:<\mathrm{e} \\ $$$${because}\:\left(\mathrm{1}.\mathrm{5}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} >\mathrm{1}. \\ $$
Commented by aba last updated on 12/Feb/23
����
Commented by Frix last updated on 12/Feb/23
ln (3/2) <(6/(13))  ((13)/6)ln (3/2) <1  ((3/2))^((13)/6) <e  ((3/2))^(1/6) ((3/2))^2 <e  ((3/2))^(1/6) (9/4)<((27)/(10))<e  ((3/2))^(1/6) <(6/5)  (3/2)<(6^6 /5^6 )  ((3×5^6 )/(2×6^6 ))<1  (5^6 /(4×6^5 ))<1  ((15625)/(31104))<1 true
$$\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{2}}\:<\frac{\mathrm{6}}{\mathrm{13}} \\ $$$$\frac{\mathrm{13}}{\mathrm{6}}\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{2}}\:<\mathrm{1} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{13}}{\mathrm{6}}} <\mathrm{e} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} <\mathrm{e} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \frac{\mathrm{9}}{\mathrm{4}}<\frac{\mathrm{27}}{\mathrm{10}}<\mathrm{e} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} <\frac{\mathrm{6}}{\mathrm{5}} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}<\frac{\mathrm{6}^{\mathrm{6}} }{\mathrm{5}^{\mathrm{6}} } \\ $$$$\frac{\mathrm{3}×\mathrm{5}^{\mathrm{6}} }{\mathrm{2}×\mathrm{6}^{\mathrm{6}} }<\mathrm{1} \\ $$$$\frac{\mathrm{5}^{\mathrm{6}} }{\mathrm{4}×\mathrm{6}^{\mathrm{5}} }<\mathrm{1} \\ $$$$\frac{\mathrm{15625}}{\mathrm{31104}}<\mathrm{1}\:\mathrm{true} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *