Menu Close

Question-187029




Question Number 187029 by yaslm last updated on 12/Feb/23
Answered by cortano12 last updated on 12/Feb/23
 (1) lim_(x→−2^− )  (ax+b)= lim_(x→−2^+ ) (x^2 +2b−17)         −2a+b = 4+2b−17         −2a−b =−13  (2) lim_(x→1^− )  (x^2 +2b−17)=lim_(x→1^+ )  (3x−3+a)         1+2b−17 = 3−3+a          −a+2b = 16⇒a=2b−16  ⇒−2(2b−16)−b=−13  ⇒−5b = −45 ⇒ { ((b=9)),((a=2)) :}
$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow−\mathrm{2}^{−} } {\mathrm{lim}}\:\left({ax}+{b}\right)=\:\underset{{x}\rightarrow−\mathrm{2}^{+} } {\mathrm{lim}}\left({x}^{\mathrm{2}} +\mathrm{2}{b}−\mathrm{17}\right) \\ $$$$\:\:\:\:\:\:\:−\mathrm{2}{a}+{b}\:=\:\mathrm{4}+\mathrm{2}{b}−\mathrm{17} \\ $$$$\:\:\:\:\:\:\:−\mathrm{2}{a}−{b}\:=−\mathrm{13} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\left({x}^{\mathrm{2}} +\mathrm{2}{b}−\mathrm{17}\right)=\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\left(\mathrm{3}{x}−\mathrm{3}+{a}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{1}+\mathrm{2}{b}−\mathrm{17}\:=\:\mathrm{3}−\mathrm{3}+{a} \\ $$$$\:\:\:\:\:\:\:\:−{a}+\mathrm{2}{b}\:=\:\mathrm{16}\Rightarrow{a}=\mathrm{2}{b}−\mathrm{16} \\ $$$$\Rightarrow−\mathrm{2}\left(\mathrm{2}{b}−\mathrm{16}\right)−{b}=−\mathrm{13} \\ $$$$\Rightarrow−\mathrm{5}{b}\:=\:−\mathrm{45}\:\Rightarrow\begin{cases}{{b}=\mathrm{9}}\\{{a}=\mathrm{2}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *