Question Number 187216 by ajfour last updated on 14/Feb/23
Commented by mr W last updated on 15/Feb/23
$${till}\:{the}\:{rod}\:{striks}\:{the}\:{ground},\:{the}\:{ball} \\ $$$${moves}\:{upwards}\:{and}\:{the}\:{string}\:{is} \\ $$$${always}\:{under}\:{tension}.\:\:{at}\:{the}\:{moment} \\ $$$${as}\:{the}\:{rod}\:{strikes}\:{the}\:{groud}\:{the}\:{ball} \\ $$$${has}\:{a}\:{certain}\:{velocity}\:{upwards}\:{and} \\ $$$${the}\:{tension}\:{in}\:{string}\:{gets}\:{zero}.\:{then} \\ $$$${the}\:{ball}\:{moves}\:{as}\:{free}\:{body}\:{upwards} \\ $$$${with}\:{this}\:{initial}\:{velocity}. \\ $$$${all}\:{in}\:{all}\:{the}\:{ball}\:{moves}\:{only}\:{in}\: \\ $$$${vertical}\:{direction},\:{so}\:{i}\:{don}'{t}\: \\ $$$${understand}\:{your}\:{diagram}\:{which} \\ $$$${shows}\:{as}\:{if}\:{the}\:{ball}\:{also}\:{moves} \\ $$$${sidewards}. \\ $$
Answered by mr W last updated on 15/Feb/23
Commented by mr W last updated on 15/Feb/23
Commented by mr W last updated on 15/Feb/23
$${when}\:{the}\:{rod}\:{falls},\:{the}\:{tension}\:{T} \\ $$$${changes}\:{and}\:{the}\:{inclination}\:{of}\:{left} \\ $$$${string}\:{changes},\:{but}\:{the}\:{right}\:{string} \\ $$$${remains}\:{always}\:{in}\:{vertical}\:{position}, \\ $$$${i}\:{think}. \\ $$
Commented by mr W last updated on 15/Feb/23
$$\theta=\mathrm{30}° \\ $$$$\mathrm{tan}\:\varphi=\frac{{L}\left(\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}{\frac{{L}}{\mathrm{2}}+{a}}=\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{2}{a}}{{L}}}={k},\:{say} \\ $$$${v}\:\mathrm{cos}\:\varphi=\omega{L} \\ $$$$\Rightarrow\omega=\frac{{v}\:\mathrm{cos}\:\varphi}{{L}}=\frac{{v}}{{L}\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }} \\ $$$${h}+\left(\frac{{L}}{\mathrm{2}}+{a}\right)\frac{\mathrm{1}}{\mathrm{cos}\:\varphi}=\mathrm{2}{a} \\ $$$${h}=\mathrm{2}{a}−\left(\frac{{L}}{\mathrm{2}}+{a}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} } \\ $$$$\frac{{I}\omega^{\mathrm{2}} }{\mathrm{2}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}=\frac{{MgL}}{\mathrm{2}}\:\mathrm{sin}\:\theta−{mg}\left({a}−{h}\right) \\ $$$$\frac{{L}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{3}}+\frac{{mv}^{\mathrm{2}} }{{M}}=\frac{{gL}}{\mathrm{2}}−\frac{\mathrm{2}{mg}}{{M}}\left[\left(\frac{{L}}{\mathrm{2}}+{a}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }−{a}\right] \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+{k}^{\mathrm{2}} \right)}+\frac{{m}}{{M}}\right]{v}^{\mathrm{2}} =\frac{{gL}}{\mathrm{2}}\left\{\mathrm{1}−\frac{\mathrm{4}{m}}{{M}}\left[\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{a}}{{L}}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }−\frac{{a}}{{L}}\right]\right\} \\ $$$$\Rightarrow{v}=\sqrt{\frac{\frac{{gL}}{\mathrm{2}}\left\{\mathrm{1}−\frac{\mathrm{4}{m}}{{M}}\left[\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{a}}{{L}}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }−\frac{{a}}{{L}}\right]\right\}}{\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+{k}^{\mathrm{2}} \right)}+\frac{{m}}{{M}}}} \\ $$
Commented by ajfour last updated on 15/Feb/23
$${I}\:{should}\:{have}\:\:{mentioned}\:{the}\: \\ $$$${radius}\:{of}\:{pulley}\:{say}\:{R}.\: \\ $$$$\left[\:{but}\:{as}\:{soon}\:{as}\:{rod}\:{strikes}\right. \\ $$$${ground},\:{string}\:{gets}\:{horizontal},\:{so} \\ $$$${thats}\:{an}\:{additional}\:{condition}\:{given} \\ $$$$\left.{that}\:{might}\:{help}\:{find}\:{R}\:={f}\left({L},{a}\right)\right] \\ $$$$\:{Under}\:{varying}\:{tension}\:{i}\:{think} \\ $$$$\:{angle}\:{of}\:{contact}\:{of}\:{rope}\:{with}\:{pulley} \\ $$$${circumference}\:{should}\:{change}.. \\ $$$${thanks}\:{for}\:{solution}\:{of}\:{this}\:{simpler} \\ $$$${case},\:{Sir}. \\ $$
Commented by mr W last updated on 15/Feb/23
$${why}\:{should}\:{the}\:{string}\:{get}\:{horizontal} \\ $$$${when}\:{the}\:{rod}\:{strikes}\:{the}\:{ground}? \\ $$
Commented by ajfour last updated on 15/Feb/23
$${Thank}\:{you}\:{sir},\:{you}\:{are}\:{right},\:{i}\: \\ $$$${got}\:{misguided}\:{by}\:{the}\:{real}\:{mass} \\ $$$${string}\:{and}\:{centrifygal}\:{force}\:{on} \\ $$$${it}\:{as}\:{it}\:{turns}\:{round}\:{the}\:{pulley}.. \\ $$
Commented by ajfour last updated on 16/Feb/23
$$\tau={TL}+{T}\left(\frac{{L}\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{R}\right)−{mg}\left(\frac{{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta \\ $$$${T}={mg}+{m}\frac{{dv}}{{dt}} \\ $$$${v}=−{L}\frac{{d}\theta}{{dt}} \\ $$$$\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\right)\frac{{d}\theta}{{dt}}+{mv}\left(\frac{{L}\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{R}\right) \\ $$$$\:\:\:\:=\left\{{mg}+{m}\frac{{dv}}{{d}\theta}\left(\frac{{d}\theta}{{dt}}\right)\right\}\left({L}+\frac{{L}\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{R}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−{mg}\left(\frac{{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta \\ $$$${say}\:\:\:{M}={pm},\:\:{R}={qL} \\ $$$$−\frac{{p}}{\mathrm{3}}\omega+\omega\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{q}\right)+\frac{{g}}{\mathrm{2}{L}}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\frac{{g}}{{L}}+\frac{\omega{d}\omega}{{d}\theta}\right)\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{q}\right) \\ $$$${say}\:\:\:\:\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{q}={k} \\ $$$$\left({k}−\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)\omega+\frac{{g}}{\mathrm{2}{L}}\left(\mathrm{cos}\:\theta−\mathrm{2}{k}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{{k}\omega{d}\omega}{{d}\theta} \\ $$$$…. \\ $$