Menu Close

Question-187216




Question Number 187216 by ajfour last updated on 14/Feb/23
Commented by mr W last updated on 15/Feb/23
till the rod striks the ground, the ball  moves upwards and the string is  always under tension.  at the moment  as the rod strikes the groud the ball  has a certain velocity upwards and  the tension in string gets zero. then  the ball moves as free body upwards  with this initial velocity.  all in all the ball moves only in   vertical direction, so i don′t   understand your diagram which  shows as if the ball also moves  sidewards.
$${till}\:{the}\:{rod}\:{striks}\:{the}\:{ground},\:{the}\:{ball} \\ $$$${moves}\:{upwards}\:{and}\:{the}\:{string}\:{is} \\ $$$${always}\:{under}\:{tension}.\:\:{at}\:{the}\:{moment} \\ $$$${as}\:{the}\:{rod}\:{strikes}\:{the}\:{groud}\:{the}\:{ball} \\ $$$${has}\:{a}\:{certain}\:{velocity}\:{upwards}\:{and} \\ $$$${the}\:{tension}\:{in}\:{string}\:{gets}\:{zero}.\:{then} \\ $$$${the}\:{ball}\:{moves}\:{as}\:{free}\:{body}\:{upwards} \\ $$$${with}\:{this}\:{initial}\:{velocity}. \\ $$$${all}\:{in}\:{all}\:{the}\:{ball}\:{moves}\:{only}\:{in}\: \\ $$$${vertical}\:{direction},\:{so}\:{i}\:{don}'{t}\: \\ $$$${understand}\:{your}\:{diagram}\:{which} \\ $$$${shows}\:{as}\:{if}\:{the}\:{ball}\:{also}\:{moves} \\ $$$${sidewards}. \\ $$
Answered by mr W last updated on 15/Feb/23
Commented by mr W last updated on 15/Feb/23
Commented by mr W last updated on 15/Feb/23
when the rod falls, the tension T  changes and the inclination of left  string changes, but the right string  remains always in vertical position,  i think.
$${when}\:{the}\:{rod}\:{falls},\:{the}\:{tension}\:{T} \\ $$$${changes}\:{and}\:{the}\:{inclination}\:{of}\:{left} \\ $$$${string}\:{changes},\:{but}\:{the}\:{right}\:{string} \\ $$$${remains}\:{always}\:{in}\:{vertical}\:{position}, \\ $$$${i}\:{think}. \\ $$
Commented by mr W last updated on 15/Feb/23
θ=30°  tan ϕ=((L(1−((√3)/2)))/((L/2)+a))=((2−(√3))/(1+((2a)/L)))=k, say  v cos ϕ=ωL  ⇒ω=((v cos ϕ)/L)=(v/(L(√(1+k^2 ))))  h+((L/2)+a)(1/(cos ϕ))=2a  h=2a−((L/2)+a)(√(1+k^2 ))  ((Iω^2 )/2)+((mv^2 )/2)=((MgL)/2) sin θ−mg(a−h)  ((L^2 ω^2 )/3)+((mv^2 )/M)=((gL)/2)−((2mg)/M)[((L/2)+a)(√(1+k^2 ))−a]  [(1/(3(1+k^2 )))+(m/M)]v^2 =((gL)/2){1−((4m)/M)[((1/2)+(a/L))(√(1+k^2 ))−(a/L)]}  ⇒v=(√((((gL)/2){1−((4m)/M)[((1/2)+(a/L))(√(1+k^2 ))−(a/L)]})/((1/(3(1+k^2 )))+(m/M))))
$$\theta=\mathrm{30}° \\ $$$$\mathrm{tan}\:\varphi=\frac{{L}\left(\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}{\frac{{L}}{\mathrm{2}}+{a}}=\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{1}+\frac{\mathrm{2}{a}}{{L}}}={k},\:{say} \\ $$$${v}\:\mathrm{cos}\:\varphi=\omega{L} \\ $$$$\Rightarrow\omega=\frac{{v}\:\mathrm{cos}\:\varphi}{{L}}=\frac{{v}}{{L}\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }} \\ $$$${h}+\left(\frac{{L}}{\mathrm{2}}+{a}\right)\frac{\mathrm{1}}{\mathrm{cos}\:\varphi}=\mathrm{2}{a} \\ $$$${h}=\mathrm{2}{a}−\left(\frac{{L}}{\mathrm{2}}+{a}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} } \\ $$$$\frac{{I}\omega^{\mathrm{2}} }{\mathrm{2}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}=\frac{{MgL}}{\mathrm{2}}\:\mathrm{sin}\:\theta−{mg}\left({a}−{h}\right) \\ $$$$\frac{{L}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{3}}+\frac{{mv}^{\mathrm{2}} }{{M}}=\frac{{gL}}{\mathrm{2}}−\frac{\mathrm{2}{mg}}{{M}}\left[\left(\frac{{L}}{\mathrm{2}}+{a}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }−{a}\right] \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+{k}^{\mathrm{2}} \right)}+\frac{{m}}{{M}}\right]{v}^{\mathrm{2}} =\frac{{gL}}{\mathrm{2}}\left\{\mathrm{1}−\frac{\mathrm{4}{m}}{{M}}\left[\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{a}}{{L}}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }−\frac{{a}}{{L}}\right]\right\} \\ $$$$\Rightarrow{v}=\sqrt{\frac{\frac{{gL}}{\mathrm{2}}\left\{\mathrm{1}−\frac{\mathrm{4}{m}}{{M}}\left[\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{a}}{{L}}\right)\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }−\frac{{a}}{{L}}\right]\right\}}{\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}+{k}^{\mathrm{2}} \right)}+\frac{{m}}{{M}}}} \\ $$
Commented by ajfour last updated on 15/Feb/23
I should have  mentioned the   radius of pulley say R.   [ but as soon as rod strikes  ground, string gets horizontal, so  thats an additional condition given  that might help find R =f(L,a)]   Under varying tension i think   angle of contact of rope with pulley  circumference should change..  thanks for solution of this simpler  case, Sir.
$${I}\:{should}\:{have}\:\:{mentioned}\:{the}\: \\ $$$${radius}\:{of}\:{pulley}\:{say}\:{R}.\: \\ $$$$\left[\:{but}\:{as}\:{soon}\:{as}\:{rod}\:{strikes}\right. \\ $$$${ground},\:{string}\:{gets}\:{horizontal},\:{so} \\ $$$${thats}\:{an}\:{additional}\:{condition}\:{given} \\ $$$$\left.{that}\:{might}\:{help}\:{find}\:{R}\:={f}\left({L},{a}\right)\right] \\ $$$$\:{Under}\:{varying}\:{tension}\:{i}\:{think} \\ $$$$\:{angle}\:{of}\:{contact}\:{of}\:{rope}\:{with}\:{pulley} \\ $$$${circumference}\:{should}\:{change}.. \\ $$$${thanks}\:{for}\:{solution}\:{of}\:{this}\:{simpler} \\ $$$${case},\:{Sir}. \\ $$
Commented by mr W last updated on 15/Feb/23
why should the string get horizontal  when the rod strikes the ground?
$${why}\:{should}\:{the}\:{string}\:{get}\:{horizontal} \\ $$$${when}\:{the}\:{rod}\:{strikes}\:{the}\:{ground}? \\ $$
Commented by ajfour last updated on 15/Feb/23
Thank you sir, you are right, i   got misguided by the real mass  string and centrifygal force on  it as it turns round the pulley..
$${Thank}\:{you}\:{sir},\:{you}\:{are}\:{right},\:{i}\: \\ $$$${got}\:{misguided}\:{by}\:{the}\:{real}\:{mass} \\ $$$${string}\:{and}\:{centrifygal}\:{force}\:{on} \\ $$$${it}\:{as}\:{it}\:{turns}\:{round}\:{the}\:{pulley}.. \\ $$
Commented by ajfour last updated on 16/Feb/23
τ=TL+T(((L(√3))/2)−2R)−mg((L/2))cos θ  T=mg+m(dv/dt)  v=−L(dθ/dt)  (((ML^2 )/3))(dθ/dt)+mv(((L(√3))/2)−2R)      ={mg+m(dv/dθ)((dθ/dt))}(L+((L(√3))/2)−2R)            −mg((L/2))cos θ  say   M=pm,  R=qL  −(p/3)ω+ω(((√3)/2)−2q)+(g/(2L))cos θ           =((g/L)+((ωdω)/dθ))(1+((√3)/2)−2q)  say    1+((√3)/2)−2q=k  (k−1−(p/3))ω+(g/(2L))(cos θ−2k)             =((kωdω)/dθ)  ....
$$\tau={TL}+{T}\left(\frac{{L}\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{R}\right)−{mg}\left(\frac{{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta \\ $$$${T}={mg}+{m}\frac{{dv}}{{dt}} \\ $$$${v}=−{L}\frac{{d}\theta}{{dt}} \\ $$$$\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\right)\frac{{d}\theta}{{dt}}+{mv}\left(\frac{{L}\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{R}\right) \\ $$$$\:\:\:\:=\left\{{mg}+{m}\frac{{dv}}{{d}\theta}\left(\frac{{d}\theta}{{dt}}\right)\right\}\left({L}+\frac{{L}\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{R}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−{mg}\left(\frac{{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta \\ $$$${say}\:\:\:{M}={pm},\:\:{R}={qL} \\ $$$$−\frac{{p}}{\mathrm{3}}\omega+\omega\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{q}\right)+\frac{{g}}{\mathrm{2}{L}}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\frac{{g}}{{L}}+\frac{\omega{d}\omega}{{d}\theta}\right)\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{q}\right) \\ $$$${say}\:\:\:\:\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\mathrm{2}{q}={k} \\ $$$$\left({k}−\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)\omega+\frac{{g}}{\mathrm{2}{L}}\left(\mathrm{cos}\:\theta−\mathrm{2}{k}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{{k}\omega{d}\omega}{{d}\theta} \\ $$$$…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *