Menu Close

Question-187274




Question Number 187274 by normans last updated on 15/Feb/23
Commented by normans last updated on 15/Feb/23
suppose point P are in △ABC  then the bisector ∠BPC,∠CPA, ∠APB  cut the sides BC,CA and AB  each on point X,Y and Z.  show that AX,BY  and CY is a kongruen.
$${suppose}\:{point}\:\boldsymbol{{P}}\:{are}\:{in}\:\bigtriangleup\boldsymbol{{ABC}} \\ $$$${then}\:{the}\:{bisector}\:\angle\boldsymbol{{BPC}},\angle\boldsymbol{{CPA}},\:\angle\boldsymbol{{APB}} \\ $$$${cut}\:{the}\:{sides}\:\boldsymbol{{BC}},\boldsymbol{{CA}}\:{and}\:\boldsymbol{{AB}}\:\:{each}\:{on}\:{point}\:\boldsymbol{{X}},\boldsymbol{{Y}}\:{and}\:\boldsymbol{{Z}}. \\ $$$${show}\:{that}\:\boldsymbol{{AX}},\boldsymbol{{BY}}\:\:{and}\:\boldsymbol{{CY}}\:{is}\:{a}\:{kongruen}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *