Question Number 187437 by Shrinava last updated on 17/Feb/23
Answered by witcher3 last updated on 17/Feb/23
$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}\frac{\mathrm{1}}{\mathrm{m}^{\mathrm{k}} }=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{m}}\right)^{\mathrm{n}} −\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{31}+\underset{\mathrm{m}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{m}^{\mathrm{n}} \left(\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{m}}\right)^{\mathrm{n}.} −\mathrm{1}\right)=\mathrm{31}^{\mathrm{30}} \right. \\ $$$$\Leftrightarrow\mathrm{31}+\underset{\mathrm{m}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\mathrm{m}\right)^{\mathrm{n}} −\mathrm{m}^{\mathrm{n}} =\mathrm{31}^{\mathrm{30}} \\ $$$$\Leftrightarrow\mathrm{31}+\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{n}} −\mathrm{1}=\mathrm{31}^{\mathrm{30}} \Leftrightarrow\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{n}} =\mathrm{31}^{\mathrm{30}} −\mathrm{30} \\ $$$$\mathrm{may}\:\mathrm{bee} \\ $$$$\mathrm{1}+\Sigma\left(\begin{pmatrix}{\mathrm{n}}\\{\mathrm{k}}\end{pmatrix}\Sigma\mathrm{m}^{\mathrm{n}−\mathrm{k}} =\mathrm{31}^{\mathrm{30}} \right. \\ $$$$\Leftrightarrow\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{n}} =\mathrm{31}^{\mathrm{30}} \Rightarrow\mathrm{n}=\mathrm{30} \\ $$