Menu Close

Question-187482




Question Number 187482 by ajfour last updated on 17/Feb/23
Commented by ajfour last updated on 17/Feb/23
If    cone′s     (R/h)=m,  green ball  radius=a.  Find b the radii of  upper balls (equal), all in contact  the way shown.
IfconesRh=m,greenballradius=a.Findbtheradiiofupperballs(equal),allincontactthewayshown.
Answered by a.lgnaoui last updated on 18/Feb/23
sin θ=(a/c)     c=OO_1 =((OH)/h)  tan θ=(R/h)=m⇒ c=((am)/( (√(1+m^2 ))))  Cone   sin β= ((R((√3)/2))/(R−rsin α))=cos α  (√(1+m^2 )) =((R(√3))/(2R−2r(m/( (√(1+m^2 ))))))  2R(√(1+m^2  )) −2mr=R(√3)           r=((R(2(√(1+m^2 )) −(√3)))/(2m)) .
sinθ=acc=OO1=OHhtanθ=Rh=mc=am1+m2Conesinβ=R32Rrsinα=cosα1+m2=R32R2rm1+m22R1+m22mr=R3r=R(21+m23)2m.
Commented by a.lgnaoui last updated on 18/Feb/23
r=b
r=b
Commented by a.lgnaoui last updated on 18/Feb/23
Answered by mr W last updated on 18/Feb/23
Commented by mr W last updated on 19/Feb/23
tan θ=(R/H)=m  A′B=((2(√3)b)/3)  OA=(a/(sin θ))  AA′=(√((a+b)^2 −(((2(√3)b)/3))^2 ))=(√(a^2 +2ab−(b^2 /3)))  OA′=(√(a^2 +2ab−(b^2 /3)))+(a/(sin θ))  OC=(a/(tan θ))  CC′=(√((a+b)^2 −(b−a)^2 ))=2(√(ab))  OC′=2(√(ab))+(a/(tan θ))  ((√(a^2 +2ab−(b^2 /3)))+(a/(sin θ)))^2 +(((2(√3)b)/3))^2 =(2(√(ab))+(a/(tan θ)))^2 +b^2   (√(a^2 +2ab−(b^2 /3)))=(b−a)sin θ+2(√(ab)) cos θ  b^2 ((4/3)−cos^2  θ)−a^2 cos^2  θ−2ab(2−3cos^2  θ)+2(b−a)(√(ab)) sin 2θ=0  let λ=(b/a)  ⇒(5−3 cos 2θ)λ^2 −6(1−3 cos 2θ)λ+12 sin 2θ (λ−1)(√λ)−3(1+cos 2θ)=0    examples:  θ=30° ⇒(b/a)≈0.8974  θ=sin^(−1) (1/( (√3)))≈35.264° ⇒(b/a)=1  θ=60° ⇒(b/a)≈1.6445
tanθ=RH=mAB=23b3OA=asinθAA=(a+b)2(23b3)2=a2+2abb23OA=a2+2abb23+asinθOC=atanθCC=(a+b)2(ba)2=2abOC=2ab+atanθ(a2+2abb23+asinθ)2+(23b3)2=(2ab+atanθ)2+b2a2+2abb23=(ba)sinθ+2abcosθb2(43cos2θ)a2cos2θ2ab(23cos2θ)+2(ba)absin2θ=0letλ=ba(53cos2θ)λ26(13cos2θ)λ+12sin2θ(λ1)λ3(1+cos2θ)=0examples:θ=30°ba0.8974θ=sin11335.264°ba=1θ=60°ba1.6445
Commented by a.lgnaoui last updated on 18/Feb/23
coupe transversale
coupetransversale
Commented by ajfour last updated on 19/Feb/23
Thanks Sir , correct answers.
Answered by ajfour last updated on 18/Feb/23
Commented by ajfour last updated on 18/Feb/23
See solution also in Q.187535
SeesolutionalsoinQ.187535
Commented by a.lgnaoui last updated on 18/Feb/23
Merci pour explication par  graphe.
Mercipourexplicationpargraphe.

Leave a Reply

Your email address will not be published. Required fields are marked *