Question Number 187608 by ajfour last updated on 19/Feb/23
Answered by a.lgnaoui last updated on 19/Feb/23
$$\mathrm{tan}\:\alpha=\frac{\mathrm{X}}{{c}}=\frac{\mathrm{X}+\mathrm{1}}{\mathrm{2X}+{c}}\Rightarrow \\ $$$$\left(\mathrm{2X}+{c}\right)\mathrm{X}={c}\left(\mathrm{X}+\mathrm{1}\right) \\ $$$$\mathrm{2X}^{\mathrm{2}} +{c}\mathrm{X}={c}\mathrm{X}+{c} \\ $$$$\:\:\:\:\mathrm{2X}^{\mathrm{2}} ={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{X}=\sqrt{\frac{{c}}{\mathrm{2}}} \\ $$
Commented by a.lgnaoui last updated on 19/Feb/23
Commented by ajfour last updated on 19/Feb/23
how verical is 2x ?
Commented by a.lgnaoui last updated on 19/Feb/23
$${OH}\:{with}\:{OH}+{C}=\mathrm{2X}+\mathrm{C} \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 19/Feb/23
Commented by a.lgnaoui last updated on 19/Feb/23
$${if}\:{the}\:{quadrilatere}\:{is}\:{not} \\ $$$${squart}\:{that}\:{is}\:{an}\:{authere} \\ $$$${value}\: \\ $$$${your}\:{solution}\:{is}\:{general} \\ $$$${thanks}. \\ $$
Commented by mr W last updated on 19/Feb/23
$${you}\:{just}\:{ignore}\:{the}\:{semicircle}\:{in}\: \\ $$$${order}\:{to}\:{be}\:{able}\:{to}\:{solve}\:{the}\:{problem}, \\ $$$${but}\:{this}\:{is}\:{not}\:{a}\:{real}\:{solution},\:{because} \\ $$$${you}\:{have}\:{changed}\:{the}\:{question}. \\ $$
Commented by mr W last updated on 19/Feb/23
Commented by a.lgnaoui last updated on 19/Feb/23
$${h}\:{can}\:{take}\:{value}\:\mathrm{2}{x}. \\ $$
Commented by mr W last updated on 20/Feb/23
$${it}'{s}\:{then}\:{not}\:{the}\:{asked}\:{question}, \\ $$$${therefore}\:{non}−{sense}. \\ $$
Commented by ajfour last updated on 20/Feb/23
yeah if the company agrees it can give me the car for 5$.
Answered by ajfour last updated on 19/Feb/23
$$\mathrm{tan}\:\alpha=\frac{{x}}{{c}}=\frac{\mathrm{1}}{{h}}=\frac{{h}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\Rightarrow\:\:{h}^{\mathrm{2}} =\mathrm{2}{x}+\mathrm{1}=\frac{{c}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$${or}\:\:\:\:{x}\sqrt{\mathrm{2}{x}+\mathrm{1}}={c} \\ $$$$\:\:\: \\ $$
Answered by mr W last updated on 19/Feb/23
$${h}^{\mathrm{2}} =\mathrm{1}×\left(\mathrm{2}{x}+\mathrm{1}\right)\:\Rightarrow{h}=\sqrt{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\frac{{c}}{{x}}=\frac{{h}}{\mathrm{1}}\: \\ $$$$\Rightarrow{x}\sqrt{\mathrm{2}{x}+\mathrm{1}}={c} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{2}{x}+\mathrm{1}\right)−{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{{c}^{\mathrm{2}} {x}}−\frac{\mathrm{2}}{{c}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\left(\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{27}{c}^{\mathrm{2}} }}+\mathrm{1}\right)}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\left(\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{27}{c}^{\mathrm{2}} }}−\mathrm{1}\right)} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\left(\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{27}{c}^{\mathrm{2}} }}+\mathrm{1}\right)}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\left(\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{27}{c}^{\mathrm{2}} }}−\mathrm{1}\right)}} \\ $$