Question Number 187639 by LowLevelLump last updated on 19/Feb/23
Commented by a.lgnaoui last updated on 19/Feb/23
$${The}\:{question}\:{is}\:{like} \\ $$$${v}_{{n}+\mathrm{1}} −{v}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\frac{{S}_{{n}} }{{a}_{{n}} }=\Sigma\left({v}_{{n}} −{u}_{{n}} \right)? \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 20/Feb/23
$${A}_{{n}} =\frac{{S}_{{n}} }{{a}_{{n}} } \\ $$$${A}_{\mathrm{1}} =\frac{{S}_{\mathrm{1}} }{{a}_{\mathrm{1}} }=\frac{{a}}{{a}}=\mathrm{1};\:{a}\:{is}\:{first}\:{term} \\ $$$${A}_{\mathrm{2}} =\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} }{{a}_{\mathrm{2}} }=\frac{{a}+{a}+{d}}{{a}+{d}}=\frac{{a}}{{a}+{d}}+\mathrm{1} \\ $$$${A}_{\mathrm{2}} −{A}_{\mathrm{1}} =\left(\frac{{a}}{{a}+{d}}+\mathrm{1}\right)−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}+{d}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{d}=\mathrm{2} \\ $$$$\left(\mathrm{a}\right){General}\:{formula}\:{for}\:{a}_{{n}} \\ $$$$\:\:{a}_{{n}} ={a}+\left({n}−\mathrm{1}\right){d}=\mathrm{1}+\left({n}−\mathrm{1}\right)\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\mathrm{2}{n}−\mathrm{2}=\mathrm{2}{n}−\mathrm{1} \\ $$$$\:\:{a}_{{n}} =\mathrm{2}{n}−\mathrm{1} \\ $$
Commented by mr W last updated on 20/Feb/23
$${a}_{{n}} =\mathrm{2}{n}−\mathrm{1} \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}−\mathrm{1}\right)={n}^{\mathrm{2}} \\ $$$${A}_{{n}} =\frac{{S}_{{n}} }{{a}_{{n}} }=\frac{{n}^{\mathrm{2}} }{\mathrm{2}{n}−\mathrm{1}} \\ $$$${clearly}\:{A}_{{n}} \:{is}\:{not}\:{series}\:{with}\:{equal} \\ $$$${difference}. \\ $$$${A}_{\mathrm{1}} =\mathrm{1} \\ $$$${A}_{\mathrm{2}} =\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}−\mathrm{1}}=\frac{\mathrm{4}}{\mathrm{3}}\:\:\Rightarrow\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${A}_{\mathrm{3}} =\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}−\mathrm{1}}=\frac{\mathrm{9}}{\mathrm{5}}\:\Rightarrow\frac{\mathrm{9}}{\mathrm{5}}−\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{7}}{\mathrm{15}}\neq\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${A}_{\mathrm{4}} =\frac{\mathrm{4}^{\mathrm{2}} }{\mathrm{2}×\mathrm{4}−\mathrm{1}}=\frac{\mathrm{16}}{\mathrm{7}}\:\Rightarrow\frac{\mathrm{16}}{\mathrm{7}}−\frac{\mathrm{9}}{\mathrm{5}}=\frac{\mathrm{17}}{\mathrm{35}}\neq\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$…… \\ $$
Commented by mr W last updated on 20/Feb/23
$${i}\:{think}\:{the}\:{question}\:{is}\:{somewhere} \\ $$$${wrong}. \\ $$
Commented by Rasheed.Sindhi last updated on 20/Feb/23
$${You}'{re}\:{very}\:{right},\:\mathcal{T}{han}\mathcal{X}\:\boldsymbol{{sir}}! \\ $$
Answered by witcher3 last updated on 20/Feb/23
$$\frac{\mathrm{s}_{\mathrm{n}+\mathrm{1}} }{\mathrm{a}_{\mathrm{n}+\mathrm{1}} }−\frac{\mathrm{s}_{\mathrm{n}} }{\mathrm{a}_{\mathrm{n}} }=\frac{\mathrm{1}}{\mathrm{3}};\mathrm{a}_{\mathrm{1}} =\mathrm{s}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{s}_{\mathrm{n}+\mathrm{1}} =\mathrm{a} \\ $$$$\Leftrightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\frac{\mathrm{s}_{\mathrm{k}+\mathrm{1}} }{\mathrm{a}_{\mathrm{k}+\mathrm{1}} }−\frac{\mathrm{s}_{\mathrm{k}} }{\mathrm{a}_{\mathrm{k}} }=\frac{\mathrm{n}−\mathrm{1}}{\mathrm{3}},\forall\mathrm{n}\geqslant\mathrm{2} \\ $$$$\frac{\mathrm{s}_{\mathrm{n}} }{\mathrm{a}_{\mathrm{n}} }=\frac{\mathrm{n}+\mathrm{2}}{\mathrm{3}} \\ $$$$\frac{\mathrm{s}_{\mathrm{n}+\mathrm{1}} }{\mathrm{a}_{\mathrm{n}+\mathrm{1}} }=\frac{\mathrm{n}+\mathrm{3}}{\mathrm{3}}\Rightarrow\frac{\mathrm{s}_{\mathrm{n}} }{\mathrm{a}_{\mathrm{n}+\mathrm{1}} }=\frac{\mathrm{n}}{\mathrm{3}} \\ $$$$\frac{\mathrm{a}_{\mathrm{n}+\mathrm{1}} }{\mathrm{a}_{\mathrm{n}} }=\frac{\mathrm{n}+\mathrm{2}}{\mathrm{n}}\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\frac{\mathrm{a}_{\mathrm{k}+\mathrm{1}} }{\mathrm{a}_{\mathrm{k}} }=\Pi\frac{\mathrm{k}+\mathrm{2}}{\mathrm{k}}=\frac{\left(\mathrm{n}+\mathrm{1}\right)!}{\left(\mathrm{n}−\mathrm{1}\right)!.\mathrm{2}}=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}},\mathrm{s}_{\mathrm{n}} =\frac{\mathrm{n}+\mathrm{2}}{\mathrm{3}}\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)}{\mathrm{6}} \\ $$$$\mathrm{s}_{\mathrm{n}} =\frac{\mathrm{n}+\mathrm{2}}{\mathrm{3}}\mathrm{a}_{\mathrm{n}} \\ $$$$\Sigma\frac{\mathrm{1}}{\mathrm{a}_{\mathrm{k}} }=\Sigma\frac{\mathrm{2}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}=\mathrm{2}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}=\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right)<\mathrm{2} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 20/Feb/23
$${the}\:{question}\:{says}\:\left\{{a}_{{n}} \right\}\:{should}\:{be} \\ $$$${series}\:{of}\:{equal}\:{difference}.\:{but} \\ $$$${a}_{{n}} =\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:{is}\:{not}\:{series}\:{with}\:{equal} \\ $$$${difference}. \\ $$
Commented by witcher3 last updated on 20/Feb/23
$$\frac{\mathrm{s}_{\mathrm{n}} }{\mathrm{a}_{\mathrm{n}} }\:\mathrm{is}\:\mathrm{arithmetic}\:\mathrm{equal} \\ $$$$ \\ $$