Question Number 187640 by ajfour last updated on 19/Feb/23
Commented by ajfour last updated on 19/Feb/23
$${If}\:{the}\:{hemisphere}\:{radius}\:{R}.\:{The} \\ $$$${ball}\:{radius}\:{b}\:{and}\:{mass}\:{m}.\:{Find}\: \\ $$$${Tension}\:{in}\:{string}\:{in}\:{terms}\:{of}\:{mg}, \\ $$$$\theta,\:{b},\:{R}. \\ $$
Answered by a.lgnaoui last updated on 19/Feb/23
$$\mathrm{tan}\:\theta=\frac{{ma}_{{c}} }{{mg}}=\frac{{v}^{\mathrm{2}} }{{Rg}}\:\:\:\:\:{v}={R}\frac{{d}\theta}{{dt}} \\ $$$${T\begin{cases}{{Tx}={T}\mathrm{cos}\:\theta=−{mg}}\\{{Ty}={T}\mathrm{sin}\:\theta={ma}_{{c}} }\end{cases}} \\ $$$$\:\:\:\:\:\:\:\:{T}={m}\sqrt{{g}^{\mathrm{2}} +{R}\left(\frac{{d}\theta}{{dt}}\:\right)^{\mathrm{2}} } \\ $$$$\left({suite}\right) \\ $$$$\eta=\frac{{m}}{{V}}=\frac{{m}}{\mathrm{4}/\mathrm{3}\pi{b}^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:{T}=\frac{\mathrm{4}}{\mathrm{3}}\pi{b}^{\mathrm{3}} \eta\sqrt{{g}^{\mathrm{2}} +{R}\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\eta={masse}\:{volumique}\: \\ $$
Answered by mr W last updated on 20/Feb/23
Commented by mr W last updated on 20/Feb/23
$$\mathrm{cos}\:\phi=\frac{{R}}{{R}+{b}} \\ $$$${T}\:\mathrm{cos}\:\phi={mg}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{T}=\frac{{mg}\:\mathrm{cos}\:\theta}{\mathrm{cos}\:\phi}=\left(\mathrm{1}+\frac{{b}}{{R}}\right){mg}\:\mathrm{cos}\:\theta\:\checkmark \\ $$
Commented by ajfour last updated on 20/Feb/23
$${very}\:{fine},\:{thanks}\:{sir}! \\ $$$${What}\:{if}\:{string}\:{be}\:{attached}\:{to} \\ $$$${the}\:{surface}\:{of}\:{the}\:{ball}\:\left({and}\:{could}\right. \\ $$$$\left.{be}\:{heavy}\:{as}\:{well}\right)\:?\: \\ $$
Commented by mr W last updated on 20/Feb/23
$${if}\:{string}\:{is}\:{weightless},\:{then}\:{it}\:{makes} \\ $$$${no}\:{difference}\:{whether}\:{the}\:{string}\:{is} \\ $$$${attached}\:{to}\:{the}\:{surface}\:{or}\:{to}\:{the} \\ $$$${center}\:{of}\:{the}\:{ball},\:{the}\:{tension}\:{of} \\ $$$${string}\:{passes}\:{always}\:{the}\:{center}\:{of}\: \\ $$$${the}\:{ball}\:{where}\:{N}\:{and}\:{mg}\:{intersect}. \\ $$
Commented by ajfour last updated on 20/Feb/23
$${yes}\:{sir}\:{without}\:{friction}\:{and}\:{light}\: \\ $$$${string}\:{the}\:{solution}\:{is}\:{complete}. \\ $$
Commented by mr W last updated on 20/Feb/23
$${if}\:{the}\:{string}\:{has}\:{uniform}\:{mass}\:\rho, \\ $$$${then}\:{we}\:{have}\:{following}\:{situation}: \\ $$$$\left({BC}={hanging}\:{string}\right) \\ $$
Commented by mr W last updated on 20/Feb/23
Commented by mr W last updated on 20/Feb/23
Commented by mr W last updated on 20/Feb/23
$${T}\mathrm{sin}\:\phi={mg}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{T}=\frac{{mg}\:\mathrm{cos}\:\theta}{\mathrm{sin}\:\phi} \\ $$$${T}_{\mathrm{0}} ={T}\:\mathrm{cos}\:\left(\phi−\theta\right) \\ $$$${a}=\frac{{T}_{\mathrm{0}} }{\rho{g}}=\frac{{mg}\:\mathrm{cos}\:\theta\:\mathrm{cos}\:\left(\phi−\theta\right)}{\rho{g}\:\mathrm{sin}\:\phi} \\ $$$$\:\:\:=\frac{{m}}{\mathrm{2}\rho}\left(\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{tan}\:\phi}+\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$${in}\:{xy}−{system}\:{with}\:{origin}\:{at}\:{center} \\ $$$${of}\:{hemisphere}: \\ $$$${x}_{{B}} ={R}\:\mathrm{cos}\:\left(\varphi+\theta\right) \\ $$$${y}_{{B}} ={R}\:\mathrm{sin}\:\left(\varphi+\theta\right) \\ $$$${x}_{{C}} =\left({R}+{b}\right)\:\mathrm{cos}\:\theta−{b}\:\mathrm{cos}\:\left(\phi−\theta\right) \\ $$$${y}_{{C}} =\left({R}+{b}\right)\:\mathrm{sin}\:\theta+{b}\:\mathrm{sin}\:\left(\phi−\theta\right) \\ $$$$\Rightarrow{x}_{{C}} −{x}_{{B}} =\left({R}+{b}\right)\:\mathrm{cos}\:\theta−{b}\:\mathrm{cos}\:\left(\phi−\theta\right)−{R}\:\mathrm{cos}\:\left(\varphi+\theta\right) \\ $$$$\Rightarrow{y}_{{B}} −{y}_{{C}} ={R}\:\mathrm{sin}\:\left(\varphi+\theta\right)−\left({R}+{b}\right)\:\mathrm{sin}\:\theta−{b}\:\mathrm{sin}\:\left(\phi−\theta\right) \\ $$$$ \\ $$$${hanging}\:{string}\:{BC}\:{is}\:{a}\:{segment}\:{of} \\ $$$${catenary}\:{with}\:{following}\:{equation}\: \\ $$$${in}\:{xy}−{system}\:{as}\:{shown}: \\ $$$${y}={a}\:\mathrm{cosh}\:\frac{{x}}{{a}} \\ $$$${at}\:{point}\:{C}: \\ $$$$\mathrm{tan}\:\left(\phi−\theta\right)=\mathrm{sinh}\:\frac{{x}_{{C}} }{{a}} \\ $$$$\frac{{x}_{{C}} }{{a}}=\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\left(\phi−\theta\right)\right. \\ $$$${y}_{{C}} ={a}\:\mathrm{cosh}\:\frac{{x}_{{C}} }{{a}} \\ $$$$\Rightarrow{y}_{{C}} ={a}\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\phi−\theta\right)} \\ $$$${at}\:{point}\:{B}: \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\left(\varphi+\theta\right)}=\mathrm{sinh}\:\frac{{x}_{{B}} }{{a}} \\ $$$$\Rightarrow\frac{{x}_{{B}} }{{a}}=\mathrm{sinh}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{tan}\:\left(\varphi+\theta\right)} \\ $$$${y}_{{B}} ={a}\:\mathrm{cosh}\:\frac{{x}_{{B}} }{{a}} \\ $$$$\Rightarrow{y}_{{B}} ={a}\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\left(\varphi+\theta\right)}} \\ $$$${x}_{{B}} −{x}_{{C}} ={a}\left[\mathrm{sinh}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{tan}\:\left(\varphi+\theta\right)}−\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\left(\phi−\theta\right)\right)\right] \\ $$$$\Rightarrow\left(\mathrm{1}+\frac{{b}}{{R}}\right)\:\mathrm{cos}\:\theta−\frac{{b}}{{R}}\:\mathrm{cos}\:\left(\phi−\theta\right)−\mathrm{cos}\:\left(\varphi+\theta\right)=\frac{{m}}{\mathrm{2}{R}\rho}\left(\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{tan}\:\phi}+\mathrm{sin}\:\mathrm{2}\theta\right)\left[\mathrm{sinh}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{tan}\:\left(\varphi+\theta\right)}−\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{tan}\:\left(\phi−\theta\right)\right)\right]\:\:\:…\left({i}\right) \\ $$$${y}_{{B}} −{y}_{{C}} ={a}\left[\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\left(\varphi+\theta\right)}}−\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\phi−\theta\right)}\right] \\ $$$$\Rightarrow\mathrm{sin}\:\left(\varphi+\theta\right)−\left(\mathrm{1}+\frac{{b}}{{R}}\right)\:\mathrm{sin}\:\theta−\frac{{b}}{{R}}\:\mathrm{sin}\:\left(\phi−\theta\right)=\frac{{m}}{\mathrm{2}{R}\rho}\left(\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{tan}\:\phi}+\mathrm{sin}\:\mathrm{2}\theta\right)\left[\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\left(\varphi+\theta\right)}}−\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\phi−\theta\right)}\right]\:\:\:…\left({ii}\right) \\ $$$${we}\:{can}\:{solve}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{for}\:\varphi\:{and}\:\phi. \\ $$