Menu Close

Question-187645




Question Number 187645 by Mingma last updated on 19/Feb/23
Answered by Ar Brandon last updated on 19/Feb/23
L=lim_(x→0) ((sin^4 (πcosx))/(1−cos(1−cos(1−cosx))))       =lim_(x→0) ((sin^4 (π−((πx^2 )/2)))/(x^8 /(128)))=lim_(x→0) ((sin^4 (((πx^2 )/2)))/(x^8 /(128)))       =lim_(x→0) (((sin(((πx^2 )/2)))/((πx^2 )/2)))^4 ×8π^4 =8π^4
$$\mathscr{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}^{\mathrm{4}} \left(\pi\mathrm{cos}{x}\right)}{\mathrm{1}−\mathrm{cos}\left(\mathrm{1}−\mathrm{cos}\left(\mathrm{1}−\mathrm{cos}{x}\right)\right)} \\ $$$$\:\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}^{\mathrm{4}} \left(\pi−\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}\right)}{\frac{{x}^{\mathrm{8}} }{\mathrm{128}}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}^{\mathrm{4}} \left(\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}\right)}{\frac{{x}^{\mathrm{8}} }{\mathrm{128}}} \\ $$$$\:\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\left(\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}\right)}{\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}}\right)^{\mathrm{4}} ×\mathrm{8}\pi^{\mathrm{4}} =\mathrm{8}\pi^{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *