Menu Close

Question-187731




Question Number 187731 by Rupesh123 last updated on 21/Feb/23
Answered by Frix last updated on 21/Feb/23
Very obviously x=0
$$\mathrm{Very}\:\mathrm{obviously}\:{x}=\mathrm{0} \\ $$
Answered by Rasheed.Sindhi last updated on 21/Feb/23
2^x +2^(−x) =2  2^x =y⇒2^(−x) =(1/y)  y+(1/y)=2  y^2 −2y+1=0  (y−1)^2 =0  y=1  2^x =1  2^x =2^0   x=0
$$\mathrm{2}^{{x}} +\mathrm{2}^{−{x}} =\mathrm{2} \\ $$$$\mathrm{2}^{{x}} ={y}\Rightarrow\mathrm{2}^{−{x}} =\frac{\mathrm{1}}{{y}} \\ $$$${y}+\frac{\mathrm{1}}{{y}}=\mathrm{2} \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$$$\mathrm{2}^{{x}} =\mathrm{1} \\ $$$$\mathrm{2}^{{x}} =\mathrm{2}^{\mathrm{0}} \\ $$$${x}=\mathrm{0} \\ $$
Answered by CElcedricjunior last updated on 21/Feb/23
2^(2x) −2^x +1=0=>(2^x −1)^2 =0 ■Moivre  =>2^x =1=>xln2=ln1=>x=((ln1)/(ln2))=(0/(ln2))=0  =>x=0 ★Cedric junior
$$\mathrm{2}^{\mathrm{2}\boldsymbol{{x}}} −\mathrm{2}^{\boldsymbol{{x}}} +\mathrm{1}=\mathrm{0}=>\left(\mathrm{2}^{\boldsymbol{{x}}} −\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:\blacksquare{Moivre} \\ $$$$=>\mathrm{2}^{\boldsymbol{{x}}} =\mathrm{1}=>\boldsymbol{{xln}}\mathrm{2}=\boldsymbol{{ln}}\mathrm{1}=>\boldsymbol{{x}}=\frac{\boldsymbol{{ln}}\mathrm{1}}{\boldsymbol{{ln}}\mathrm{2}}=\frac{\mathrm{0}}{\boldsymbol{{ln}}\mathrm{2}}=\mathrm{0} \\ $$$$=>\boldsymbol{{x}}=\mathrm{0}\:\bigstar\mathscr{C}{edric}\:{junior} \\ $$
Answered by manxsol last updated on 21/Feb/23
a+(1/a)≫2⇒a=1   1+1=2  2^z =1⇒x=0
$${a}+\frac{\mathrm{1}}{{a}}\gg\mathrm{2}\Rightarrow{a}=\mathrm{1}\:\:\:\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$$\mathrm{2}^{{z}} =\mathrm{1}\Rightarrow{x}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *