Menu Close

Question-187789




Question Number 187789 by ajfour last updated on 21/Feb/23
Answered by mahdipoor last updated on 22/Feb/23
F_x =0⇒Tcos(θ)=(T+dT)cos(θ+dθ)  F_y =0⇒T(sinθ)+dW=(T+dT)sin(θ+dθ)  ⇒Lem I⇒   { ((0=−T.sin(θ).dθ+dT.cos(θ))),((g.dm=T.cos(θ).dθ+dT.sin(θ))) :}⇒  0=((−sin(θ))/(cos(θ)))dθ+(dT/T)⇒lnA=ln(cosθ)+ln(T)  ⇒A=Tcosθ=cte   dT=((Asin(θ).dθ)/(cos^2 (θ)))  dW=A.dθ+A((sin^2 θ)/(cos^2 θ)).dθ⇒  B+W=Aθ+(tanθ−θ)  ⇒⇒ { ((A=Tcosθ)),((B=(A−1)θ+tanθ−W)) :}     A,B=cte  for θ=α , T=T_i =(W/(2sinα))  A=(W/2)cotα , B=(A−1)α+tanα−W  −−−−−−−−−−−−  Lem I:  ⇒((d(cosθ))/dθ)=((cos(θ+dθ)−cos(θ))/dθ)=−sinθ  ⇒⇒cos(θ+dθ)=cos(θ)−sin(θ).dθ  ⇒((d(sinθ))/dθ)=((sin(θ+dθ)−sin(θ))/dθ)=cosθ  ⇒⇒sin(θ+dθ)=sin(θ)+cos(θ).dθ
Fx=0Tcos(θ)=(T+dT)cos(θ+dθ)Fy=0T(sinθ)+dW=(T+dT)sin(θ+dθ)LemI{0=T.sin(θ).dθ+dT.cos(θ)g.dm=T.cos(θ).dθ+dT.sin(θ)0=sin(θ)cos(θ)dθ+dTTlnA=ln(cosθ)+ln(T)A=Tcosθ=ctedT=Asin(θ).dθcos2(θ)dW=A.dθ+Asin2θcos2θ.dθB+W=Aθ+(tanθθ)⇒⇒{A=TcosθB=(A1)θ+tanθWA,B=cteforθ=α,T=Ti=W2sinαA=W2cotα,B=(A1)α+tanαWLemI:d(cosθ)dθ=cos(θ+dθ)cos(θ)dθ=sinθ⇒⇒cos(θ+dθ)=cos(θ)sin(θ).dθd(sinθ)dθ=sin(θ+dθ)sin(θ)dθ=cosθ⇒⇒sin(θ+dθ)=sin(θ)+cos(θ).dθ

Leave a Reply

Your email address will not be published. Required fields are marked *