Question Number 187857 by thean last updated on 23/Feb/23
Answered by a.lgnaoui last updated on 23/Feb/23
$$\left.{a}\right){z}^{\mathrm{2}} =−{i}=\mathrm{cos}\:\left(−\frac{\pi}{\mathrm{2}}\right)+{i}\mathrm{sin}\:\left(−\frac{\pi}{\mathrm{2}}\right) \\ $$$${z}=\left[\mathrm{cos}\:\left(−\frac{\pi}{\mathrm{2}}\right)+{i}\mathrm{sin}\:\left(−\frac{\pi}{\mathrm{2}}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} = \\ $$$$\mathrm{cos}\:\left(−\frac{\pi}{\mathrm{4}}\right)+{i}\mathrm{sin}\:\left(−\frac{\pi}{\mathrm{4}}\right)= \\ $$$$\:\:\:\:{arg}\left({z}\right)=\left(−\frac{\pi}{\mathrm{4}};\frac{\mathrm{3}\pi}{\mathrm{4}}\right) \\ $$$$\:\:\:\:{z}=\left\{+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}};−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right\} \\ $$$$\left.{b}\right){z}^{\mathrm{5}} =\mathrm{1}−{i}\sqrt{\mathrm{3}}\:=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)= \\ $$$$\:\:{z}^{\mathrm{5}} =\left[\mathrm{2},−\frac{\pi}{\mathrm{3}}{mod}\left(\mathrm{2}\pi\right)\right]\Rightarrow \\ $$$$\:\:\:{z}=\left[\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{5}}} ,−\frac{\pi}{\mathrm{15}}+\frac{{k}\mathrm{2}\pi}{\mathrm{15}}\left({mod}\mathrm{2}\pi\right)\right] \\ $$$${z}_{\mathrm{1}} =^{\mathrm{5}} \sqrt{\mathrm{2}}\:\left[\mathrm{cos}\:\left(−\frac{\pi}{\mathrm{15}}\right)+{i}\mathrm{sin}\:\left(−\frac{\pi}{\mathrm{15}}\right)\right] \\ $$$${z}_{\mathrm{2}} =^{\mathrm{5}} \sqrt{\mathrm{2}}\:\left[\mathrm{cos}\:\left(\frac{\pi}{\mathrm{15}}\right)+{i}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{15}}\right)\right] \\ $$$${z}\mathrm{3}=^{\mathrm{5}} \sqrt{\mathrm{2}}\left[\mathrm{cos}\:\left(\frac{\pi}{\mathrm{5}}\right){i}\mathrm{sin}\left(\:\frac{\pi}{\mathrm{5}}\right)\right] \\ $$$${z}_{\mathrm{4}} =^{\mathrm{5}} \sqrt{\mathrm{2}}\:\left[\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{15}}\right)+{i}\mathrm{sin}\:\left(\frac{\mathrm{4}\pi}{\mathrm{15}}\right)\right] \\ $$$${z}_{\mathrm{5}} =^{\mathrm{5}} \sqrt{\mathrm{2}}\:\left[\mathrm{cos}\:\left(\frac{\mathrm{7}\pi}{\mathrm{15}}\right)+{i}\mathrm{sin}\:\left(\frac{\mathrm{7}\pi}{\mathrm{15}}\right)\right] \\ $$$$\left.{c}\right){z}^{\mathrm{3}} =\mathrm{4}\sqrt{\mathrm{2}}\:\left(\mathrm{1}+{i}\right) \\ $$$$\:\:\:{z}^{\mathrm{3}} =\mathrm{8}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$${z}=\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{12}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{12}}\right){mod}\frac{{k}\mathrm{2}\pi}{\mathrm{12}} \\ $$$${z}_{\mathrm{1}} =\mathrm{2}\left(\mathrm{cos}\:\frac{\pi}{\mathrm{12}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{12}}\right) \\ $$$$\:{z}_{\mathrm{2}} =\mathrm{2}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$\mathrm{z}_{\mathrm{3}} =\mathrm{2}\left(\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{12}}+{i}\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{12}}\right) \\ $$$$\left.{d}\right){z}^{\mathrm{2}} =\mathrm{8}−\mathrm{6}{i}\:=\mathrm{10}\left(\frac{\mathrm{4}}{\mathrm{5}}+{i}\frac{\mathrm{3}}{\mathrm{5}}\right) \\ $$$${z}={a}+{ib} \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{i}\left(\mathrm{2}{ab}\right)=\mathrm{8}−\mathrm{6}{i} \\ $$$${Methode}\left[\:{algebrique}:\right. \\ $$$$\begin{cases}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{8}}\\{\mathrm{2}{ab}\:\:\:\:\:\:\:=−\mathrm{6}}\end{cases} \\ $$$$\:\:{ab}=−\mathrm{3}\Rightarrow{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{9} \\ $$$${X}^{\mathrm{2}} −\mathrm{8}{X}−\mathrm{9}=\mathrm{0} \\ $$$$\mathrm{64}+\mathrm{36}=\mathrm{10}^{\mathrm{2}} \\ $$$${X}=\frac{\mathrm{8}\pm\mathrm{10}}{\mathrm{2}}\:\:\:\Rightarrow\left({a},{b}\right)=\left(\mathrm{3},{i}\right) \\ $$$${z}_{\mathrm{1}} =−\mathrm{3}+{i}\:\:\:\:{z}_{\mathrm{2}} =\mathrm{3}−\overset{} {{i}} \\ $$
Commented by a.lgnaoui last updated on 23/Feb/23
$${we}\:{can}\:{solve}\:{auther}\:{questions} \\ $$$${with}\:{methode}\:{algebrique} \\ $$$${we}\:{pout}\:{z}={x}+{iy} \\ $$$${and}\:{develope}\:{z}\:^{\mathrm{2}} {or}\:{z}^{\mathrm{3}^{} } \:{or}\:{z}^{\mathrm{5}} \\ $$$${parrie}\:{reelle}\:{et}\:{partie}\left[{umag}\right. \\ $$$${z}^{\mathrm{3}} =\left({x}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{3}} \right)+{i}\left({y}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} {y}\right)={a}+{ib} \\ $$$$\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{2}} ={a}}\\{{y}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} {y}=\mathrm{2}{b}}\end{cases} \\ $$$$.\Rightarrow\left({x},{y}\right)={f}\left({a},{b}\right) \\ $$$$ \\ $$