Question Number 187891 by Rupesh123 last updated on 23/Feb/23
Answered by mr W last updated on 24/Feb/23
Commented by mr W last updated on 25/Feb/23
$$\Delta={area}\:{of}\:\Delta{ABC} \\ $$$$\frac{\mathrm{sin}\:\left(\beta+{C}\right)}{\mathrm{sin}\:\beta}=\frac{{a}}{\frac{{b}}{\mathrm{2}}}=\frac{\mathrm{2}{a}}{{b}} \\ $$$$\mathrm{cos}\:{C}+\frac{\mathrm{sin}\:{C}}{\mathrm{tan}\:\beta}=\frac{\mathrm{2}{a}}{{b}} \\ $$$$\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}+\frac{\mathrm{2}\Delta}{{ab}\:\mathrm{tan}\:\beta}=\frac{\mathrm{2}{a}}{{b}} \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{4}\Delta}{\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$${similarly} \\ $$$$\mathrm{tan}\:\gamma=\frac{\mathrm{4}\Delta}{\mathrm{3}{a}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\theta=\pi−\left(\beta+\gamma\right) \\ $$$$\mathrm{tan}\:\theta=−\mathrm{tan}\:\left(\beta+\gamma\right)=−\frac{\mathrm{tan}\:\beta+\mathrm{tan}\:\gamma}{\mathrm{1}−\mathrm{tan}\:\beta\:\mathrm{tan}\:\gamma} \\ $$$$\:\:=\frac{\frac{\mathrm{4}\Delta}{\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{\mathrm{4}\Delta}{\mathrm{3}{a}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\frac{\mathrm{4}\Delta}{\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }×\frac{\mathrm{4}\Delta}{\mathrm{3}{a}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\mathrm{1}} \\ $$$$\:\:=\frac{\mathrm{6}{a}^{\mathrm{2}} }{\mathrm{16}\Delta^{\mathrm{2}} −\left(\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\left(\mathrm{3}{a}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}×\mathrm{4}\Delta \\ $$$$\:\:=\frac{\mathrm{24}{a}^{\mathrm{2}} \Delta}{\mathrm{16}\Delta^{\mathrm{2}} −\left(\mathrm{3}{a}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:=\frac{\mathrm{24}{a}^{\mathrm{2}} \Delta}{\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)−\mathrm{9}{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} −\mathrm{2}{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$$\:\:=\frac{\mathrm{12}{a}^{\mathrm{2}} \Delta}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} −\mathrm{5}{a}^{\mathrm{4}} } \\ $$$$\:\:=\frac{\mathrm{12}\Delta}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{5}{a}^{\mathrm{2}} }\:\checkmark \\ $$
Commented by Rupesh123 last updated on 26/Feb/23
Excellent, sir!