Question-187893 Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 187893 by Rupesh123 last updated on 23/Feb/23 Answered by a.lgnaoui last updated on 23/Feb/23 △ABDsin53AD=sin(14+x)AB=sin(14+53+x)2k2ksin53=ADsin(67+x)(1)△ACDsin14k=sinxADksinx=ADsin14(2)(1)(2)⇒2sin53sinx=sin(67+x)sin142sin53×sin14=sinx×sin(67+x)=sin2x×cos67+sinxcosxsin67=cos67sin2x+sin67sinx1−sin2x1−sin2x=(2sin53sin14−cos67sin2x)2×1sin267sin2xposinssinx=zsin53=asin14=bcos67=csin67=dd2z2(1−z2)=(2ab−cz2)2d2z4−2d2z2+d2z2=4a2b2+c2z4−4abcz2z2=t(d2−c2)t2+(4abc−d2)t−4a2b2=0t2+4abc−d2d2−c2t−4a2b2d2−c2=0(t+4abc−d22(d2−c2))2−(4a2b2(d2−c2)4(d2−c2)2+(4abc−d2)4(d2−c2)2)=0{t+4abc−d22(d2−c2)±4a2b2(d2−c2)+4abc−d22(d2−c2)=0t=sin2xx=arcsint.(asuivre)…….. Answered by mr W last updated on 23/Feb/23 m=“median″mk=sinxsin14°…(i)2km=sin(53°+14°+x)sin53°…(ii)(i)×(ii):2=sinxsin14°×sin(53°+14°+x)sin53°2sin14°sin53°=sin2xcos67°+sinxcosxsin67°4sin14°sin53°=(1−cos2x)cos67°+sin2xsin67°cos67°−4sin14°sin53°=cos(2x+67°)x=cos−1(cos67°−4sin14°sin53°)−67°2≈22.732° Commented by Rupesh123 last updated on 23/Feb/23 Very nice solution! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-56823Next Next post: Question-56824 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.