Menu Close

Question-187893




Question Number 187893 by Rupesh123 last updated on 23/Feb/23
Answered by a.lgnaoui last updated on 23/Feb/23
△ABD    ((sin 53)/(AD))=((sin (14+x))/(AB))=((sin (14+53+x))/(2k))     2ksin 53=ADsin (67+x)         (1)  △ACD   ((sin 14)/k)=((sin x)/(AD))       ksin x=ADsin 14                      (2)    (((1))/((2)))⇒   ((2sin 53)/(sin x))=((sin (67+x))/(sin 14))     2sin 53×sin 14=sin x×sin (67+x)  =sin^2 x×cos 67+sin xcos xsin 67  =cos 67sin^2 x+sin 67sin x(√(1−sin^2 x ))   1−sin^2 x=(2sin 53sin 14−cos  67sin^2 x)^2 ×(1/(sin^2 67sin^2 x))  posins   sin x=z  sin 53=a    sin 14=b   cos 67=c  sin 67=d  d^2 z^2 (1−z^2 )=(2ab−cz^2 )^2   d^2 z^4 −2d^2 z^2 +d^2 z^2 =4a^2 b^2 +c^2 z^4 −4abcz^2   z^2 =t    (d^2 −c^2 )t^2 +(4abc−d^2 )t−4a^2 b^2 =0    t^2 +((4abc−d^2 )/(d^2 −c^2 ))t−((4a^2 b^2 )/(d^2 −c^2 ))=0  (t+((4abc−d^2 )/(2(d^2 −c^2 ))))^2 −(((4a^2 b^2 (d^2 −c^2 ))/(4(d^2 −c^2 )^2 ))+(((4abc−d^2 ))/(4(d^2 −c^2 )^2 )))=0   { ((t+((4abc−d^2 )/(2(d^2 −c^2 )))±((√(4a^2 b^2 (d^2 −c^2 )+4abc−d^2 ))/(2(d^2 −c^2 )))=0)),((t=sin^2  x      x=arcsin (√(t.)) )) :}  (a suivre)........
ABDsin53AD=sin(14+x)AB=sin(14+53+x)2k2ksin53=ADsin(67+x)(1)ACDsin14k=sinxADksinx=ADsin14(2)(1)(2)2sin53sinx=sin(67+x)sin142sin53×sin14=sinx×sin(67+x)=sin2x×cos67+sinxcosxsin67=cos67sin2x+sin67sinx1sin2x1sin2x=(2sin53sin14cos67sin2x)2×1sin267sin2xposinssinx=zsin53=asin14=bcos67=csin67=dd2z2(1z2)=(2abcz2)2d2z42d2z2+d2z2=4a2b2+c2z44abcz2z2=t(d2c2)t2+(4abcd2)t4a2b2=0t2+4abcd2d2c2t4a2b2d2c2=0(t+4abcd22(d2c2))2(4a2b2(d2c2)4(d2c2)2+(4abcd2)4(d2c2)2)=0{t+4abcd22(d2c2)±4a2b2(d2c2)+4abcd22(d2c2)=0t=sin2xx=arcsint.(asuivre)..
Answered by mr W last updated on 23/Feb/23
m=“median”  (m/k)=((sin x)/(sin 14°))   ...(i)  ((2k)/m)=((sin (53°+14°+x))/(sin 53°))   ...(ii)  (i)×(ii):  2=((sin x)/(sin 14°))×((sin (53°+14°+x))/(sin 53°))  2 sin 14° sin 53°=sin^2  x cos 67°+sin x cos x sin 67°  4 sin 14° sin 53°=(1−cos 2x) cos 67°+sin 2x  sin 67°  cos 67°−4 sin 14° sin 53°=cos (2x+67°)  x=((cos^(−1) (cos 67°−4 sin 14° sin 53°)−67°)/2)     ≈22.732°
m=medianmk=sinxsin14°(i)2km=sin(53°+14°+x)sin53°(ii)(i)×(ii):2=sinxsin14°×sin(53°+14°+x)sin53°2sin14°sin53°=sin2xcos67°+sinxcosxsin67°4sin14°sin53°=(1cos2x)cos67°+sin2xsin67°cos67°4sin14°sin53°=cos(2x+67°)x=cos1(cos67°4sin14°sin53°)67°222.732°
Commented by Rupesh123 last updated on 23/Feb/23
Very nice solution!

Leave a Reply

Your email address will not be published. Required fields are marked *