Menu Close

Question-187989




Question Number 187989 by mnjuly1970 last updated on 24/Feb/23
Answered by HeferH last updated on 24/Feb/23
 b^2 =ac   b^3 =abc   ((b^3 c^3 +a^3 c^3 +a^3 b^3 )/(a^3 b^3 c^3 ))∙(((a^2 b^2 c^2 )/(a^3 +b^3 +c^3 )))=   ((b^3 c^3 +a^3 c^3 +a^3 b^3 )/(abc))∙((1/(a^3 +b^3 +c^3 )))=   (((bc)^3 +b^6 +(ab)^3 )/b^3 )∙((1/(a^3 +b^3 +c^3 )))=   c^3 + b^3  + a^3 ∙((1/(a^3 +b^3 +c^3 )))= 1
b2=acb3=abcb3c3+a3c3+a3b3a3b3c3(a2b2c2a3+b3+c3)=b3c3+a3c3+a3b3abc(1a3+b3+c3)=(bc)3+b6+(ab)3b3(1a3+b3+c3)=c3+b3+a3(1a3+b3+c3)=1
Answered by MathGuy last updated on 24/Feb/23
Answer :−   ((a^2 b^2 c^2 )/(a^3 +b^3 +c^3 ))(((b^3 c^3 +c^3 a^3 +a^3 b^3 )/(a^3 b^3 c^3 )))    ⇒ (1/(a^3 +b^3 +c^3 ))(((b^3 c^3 +c^3 a^3 +a^3 b^3 )/(abc)))    ⇒ (1/(a^3 +b^3 +c^3 ))(((b^2 c^2 )/a)+((c^2 a^2 )/b)+((a^2 b^2 )/c))  substitute b^2 =ac & c^2 a^2 =b^2 , in the expression  under brackets and simplify.  you will get   (1/(a^3 +b^3 +c^3 ))(a^3 +b^3 +c^3 )  = 1
Answer:a2b2c2a3+b3+c3(b3c3+c3a3+a3b3a3b3c3)1a3+b3+c3(b3c3+c3a3+a3b3abc)1a3+b3+c3(b2c2a+c2a2b+a2b2c)substituteb2=ac&c2a2=b2,intheexpressionunderbracketsandsimplify.youwillget1a3+b3+c3(a3+b3+c3)=1

Leave a Reply

Your email address will not be published. Required fields are marked *