Question Number 18799 by tawa tawa last updated on 29/Jul/17
Answered by Tinkutara last updated on 30/Jul/17
$$\mathrm{Diagonal}\:\mathrm{of}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{square}\:=\:\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{Diagonal}\:\mathrm{of}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{square}\:=\:\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\mathrm{Diagonal}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{square}\:=\:\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$$\mathrm{Area}\:\mathrm{of}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{square}\:=\:\left(\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \boldsymbol{\div}\:\mathrm{2}\:=\:\mathrm{36} \\ $$$$\mathrm{Area}\:\mathrm{of}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{square}\:=\:\left(\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{4}}\right)^{\mathrm{2}} \boldsymbol{\div}\:\mathrm{2}\:=\:\mathrm{9} \\ $$$$\mathrm{Area}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{square}\:=\:\left(\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\mathrm{8}}\right)^{\mathrm{2}} \boldsymbol{\div}\:\mathrm{2}\:=\:\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{a}\:\mathrm{GP}\:\mathrm{with}\:{a}\:=\:\mathrm{36}\:\mathrm{and}\:{r}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{10}\:\mathrm{terms}\:=\:\frac{\mathrm{36}}{\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{4}}}\:=\:\mathrm{48} \\ $$$$\mathrm{Hence}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{all}\:\mathrm{these}\:\mathrm{squares} \\ $$$$\mathrm{is}\:\mathrm{48}\:\mathrm{sq}.\:\mathrm{units}. \\ $$$$\mathrm{Area}\:\mathrm{remaining}\:=\:\mathrm{144}\:−\:\mathrm{48}\:=\:\mathrm{96}\:\mathrm{sq}.\:\mathrm{units} \\ $$
Commented by tawa tawa last updated on 30/Jul/17
$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$