Menu Close

Question-188062




Question Number 188062 by mr W last updated on 25/Feb/23
Commented by mr W last updated on 25/Feb/23
A and B are connected with a rope  of length L. A mouse of mass m  moves from A to B along the rope.  Find the locus of the mouse,  a) if the mass of rope is neglectable.  b) if the rope has a mass M.
$${A}\:{and}\:{B}\:{are}\:{connected}\:{with}\:{a}\:{rope} \\ $$$${of}\:{length}\:{L}.\:{A}\:{mouse}\:{of}\:{mass}\:{m} \\ $$$${moves}\:{from}\:{A}\:{to}\:{B}\:{along}\:{the}\:{rope}. \\ $$$${Find}\:{the}\:{locus}\:{of}\:{the}\:{mouse}, \\ $$$$\left.{a}\right)\:{if}\:{the}\:{mass}\:{of}\:{rope}\:{is}\:{neglectable}. \\ $$$$\left.{b}\right)\:{if}\:{the}\:{rope}\:{has}\:{a}\:{mass}\:{M}. \\ $$
Commented by mr W last updated on 25/Feb/23
basically this is the same problem  which the suspention bridges like   following also have:
$${basically}\:{this}\:{is}\:{the}\:{same}\:{problem} \\ $$$${which}\:{the}\:{suspention}\:{bridges}\:{like}\: \\ $$$${following}\:{also}\:{have}: \\ $$
Commented by mr W last updated on 25/Feb/23
Commented by mr W last updated on 25/Feb/23
Commented by mr W last updated on 25/Feb/23
the difference is: not a mouse, but a  lot of people and/or cars are moving.
$${the}\:{difference}\:{is}:\:{not}\:{a}\:{mouse},\:{but}\:{a} \\ $$$${lot}\:{of}\:{people}\:{and}/{or}\:{cars}\:{are}\:{moving}. \\ $$
Commented by 073 last updated on 25/Feb/23
see the R∙C Hibbler structure analysis
$$\mathrm{see}\:\mathrm{the}\:\mathrm{R}\centerdot\mathrm{C}\:\mathrm{Hibbler}\:\mathrm{structure}\:\mathrm{analysis} \\ $$
Commented by mr W last updated on 25/Feb/23
i don′t want to apply complicated  structure analysis, but just want to  apply simple mathematics.
$${i}\:{don}'{t}\:{want}\:{to}\:{apply}\:{complicated} \\ $$$${structure}\:{analysis},\:{but}\:{just}\:{want}\:{to} \\ $$$${apply}\:{simple}\:{mathematics}. \\ $$
Commented by 073 last updated on 25/Feb/23
ok use hyperbolic function relations
$$\mathrm{ok}\:\mathrm{use}\:\mathrm{hyperbolic}\:\mathrm{function}\:\mathrm{relations} \\ $$
Answered by mr W last updated on 25/Feb/23
Commented by mr W last updated on 25/Feb/23
case a)  if the rope is weightless,   AC+CB=L  ⇒locus of point C, where the mouse  is, is a part of an ellipse with focii   at A and B.
$$\left.{case}\:{a}\right) \\ $$$${if}\:{the}\:{rope}\:{is}\:{weightless},\: \\ $$$${AC}+{CB}={L} \\ $$$$\Rightarrow{locus}\:{of}\:{point}\:{C},\:{where}\:{the}\:{mouse} \\ $$$${is},\:{is}\:{a}\:{part}\:{of}\:{an}\:{ellipse}\:{with}\:{focii}\: \\ $$$${at}\:{A}\:{and}\:{B}. \\ $$
Commented by mr W last updated on 25/Feb/23
case b)  this case is solved in Q187675.
$$\left.{case}\:{b}\right) \\ $$$${this}\:{case}\:{is}\:{solved}\:{in}\:{Q}\mathrm{187675}. \\ $$
Commented by mr W last updated on 25/Feb/23
Commented by mr W last updated on 25/Feb/23

Leave a Reply

Your email address will not be published. Required fields are marked *