Question Number 188095 by normans last updated on 25/Feb/23
Commented by infinityaction last updated on 25/Feb/23
$$\mathrm{20} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Feb/23
$${Welcome}\:{after}\:{long}\:{absence}\: \\ $$$${infinityaction}\:{sir}! \\ $$
Commented by infinityaction last updated on 26/Feb/23
$${no}\:{sir}\:{my}\:{second}\:{id}\:{is}\:{universe} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Feb/23
thank you!
Answered by mr W last updated on 25/Feb/23
Commented by mr W last updated on 25/Feb/23
$$\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{2}\beta+\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha=\pi \\ $$$$\Rightarrow\beta=\frac{\pi}{\mathrm{4}}+\alpha \\ $$$$\gamma+\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−\alpha\right)=\pi \\ $$$$\Rightarrow\gamma=\mathrm{2}\alpha \\ $$$${A}_{{pink}} =\frac{\mathrm{12}{x}×\mathrm{2}×\mathrm{12}{x}\:\mathrm{cos}\:\beta×\mathrm{cos}\:\beta}{\mathrm{2}}=\mathrm{30} \\ $$$$\left(\mathrm{12}{x}\right)^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\beta=\mathrm{30} \\ $$$$\left(\mathrm{12}{x}\right)^{\mathrm{2}} \left(\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha\right)^{\mathrm{2}} =\mathrm{60} \\ $$$$\left(\mathrm{12}{x}\right)^{\mathrm{2}} \left(\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}\right)^{\mathrm{2}} =\mathrm{60} \\ $$$$\left(\mathrm{12}{x}\right)^{\mathrm{2}} =\mathrm{150} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\frac{\mathrm{150}}{\mathrm{144}}=\frac{\mathrm{25}}{\mathrm{24}} \\ $$$${A}_{{blue}} =\frac{\mathrm{4}{x}×\mathrm{8}{x}×\mathrm{sin}\:\gamma}{\mathrm{2}}=\mathrm{16}{x}^{\mathrm{2}} \mathrm{sin}\:\left(\mathrm{2}\alpha\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{16}×\frac{\mathrm{25}}{\mathrm{24}}×\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{10}\:\checkmark \\ $$
Commented by manxsol last updated on 26/Feb/23
$$\mathrm{2}\alpha=\mathrm{45}\:\:\:\:\:{tg}\alpha=\frac{\mathrm{1}}{\mathrm{3}}\:\alpha=\mathrm{18}.\mathrm{43}? \\ $$
Commented by mr W last updated on 26/Feb/23
$${look}\:{at}\:{my}\:{comment}\:{below}! \\ $$
Answered by manxsol last updated on 26/Feb/23
$$\frac{\mathrm{12}{xh}}{\mathrm{2}}=\mathrm{30}\Rightarrow{xh}=\mathrm{5} \\ $$$$\frac{\mathrm{8}\left({xh}\right)}{\mathrm{2}}=\frac{\mathrm{8}×\mathrm{5}}{\mathrm{2}}=\mathrm{20} \\ $$
Commented by manxsol last updated on 26/Feb/23
$$ \\ $$$$ \\ $$
Commented by mr W last updated on 26/Feb/23
$${be}\:{careful}! \\ $$$${the}\:{diagonal}\:{which}\:{looks}\:{like}\:{diagonal} \\ $$$${and}\:{you}\:{took}\:{as}\:{diagonal}\:{is}\:{in}\:{fact}\: \\ $$$${not}\:{the}\:{diagonal}! \\ $$$${from}\:{the}\:{proportion}\:{of}\:\mathrm{4}{x}\:{and}\:\mathrm{8}{x}\:{in} \\ $$$${the}\:{diagram},\:{you}\:{can}\:{see}\:\mathrm{8}{x}\:{is}\:{not} \\ $$$$\mathrm{2}\:{times}\:{as}\:{long}\:{as}\:\mathrm{4}{x},\:{that}\:{means} \\ $$$${the}\:{diagram}\:{is}\:{not}\:{drawn}\:{to}\:{scale}. \\ $$$${when}\:{you}\:{draw}\:{the}\:{diagram}\:{to}\:{scale}, \\ $$$${it}\:{should}\:{look}\:{like}\:{this}: \\ $$
Commented by mr W last updated on 26/Feb/23
Commented by mr W last updated on 26/Feb/23
$${therefore}\:{the}\:{solution}\:{is}\:{not}\:{as}\:{easy} \\ $$$${as} \\ $$$$?=\frac{\mathrm{8}{x}}{\mathrm{12}{x}}×\mathrm{30}=\mathrm{20} \\ $$$${i}\:{was}\:{not}\:{misguided}\:{by}\:{the}\:“{wrong}'' \\ $$$${diagram},\:{so}\:{i}\:{selected}\:{a}\:“{complicated}'',\: \\ $$$${but}\:{correct}\:{way}\:{to}\:{solve}. \\ $$
Commented by manxsol last updated on 26/Feb/23
Commented by manxsol last updated on 26/Feb/23
$$\mathrm{12}{a}\left(\mathrm{2}{cos}^{\mathrm{2}} −\mathrm{1},−\mathrm{2}{sin}\alpha{cos}\alpha\right) \\ $$$$\left(\mathrm{9}.\mathrm{6}{a},−\mathrm{7}.\mathrm{2}{a}\right) \\ $$$${v}=\left(\mathrm{12},\mathrm{0}\right)−\left(\mathrm{9}.\mathrm{6},\mathrm{7}.\mathrm{2}\right) \\ $$$${v}=\left(\mathrm{2}.\mathrm{4},\mathrm{7}.\mathrm{2}\right) \\ $$$${P}={C}−{v} \\ $$$${P}=\left(\mathrm{12}{a},\mathrm{12}{a}\right)−\left(\mathrm{2}.\mathrm{4},\mathrm{7}.\mathrm{2}\right) \\ $$$${P}=\left(\mathrm{9}.\mathrm{6}{a}\:;\mathrm{4}.\mathrm{8}{a}\right) \\ $$$${h}_{{blue}} =\mathrm{12}{a}−\mathrm{9}.\mathrm{6}{a}=\mathrm{2}.\mathrm{4}{a} \\ $$$${h}_{{pink}} =\mathrm{4}.\mathrm{8}{a} \\ $$$$\left(\mathrm{4}.\mathrm{8}{a}\right)\left(\mathrm{12}{a}\right)=\mathrm{60} \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{25}}{\mathrm{24}} \\ $$$${A}_{{blue}} =\left(\mathrm{8}{a}\right)\left(\mathrm{2}.\mathrm{4}{a}\right)\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${A}_{{blue}} =\left(\frac{\mathrm{48}}{\mathrm{5}}\right)\left(\frac{\mathrm{25}}{\mathrm{24}}\right)=\mathrm{10} \\ $$$${You}\:{are}\:{great}\:{and}\:{generous}. \\ $$$${Muchas}\:{gracias} \\ $$
Commented by manxsol last updated on 26/Feb/23
$${all}\:{understood}.\:{is}\:{a}\:{clear} \\ $$$$\:{case}\:{of}\:{origami} \\ $$
Commented by manxsol last updated on 26/Feb/23
$$ \\ $$