Question Number 188147 by normans last updated on 26/Feb/23
Answered by Rasheed.Sindhi last updated on 26/Feb/23
$$\mathrm{5}\:\mid\:{ABC}\:\Rightarrow{C}=\mathrm{0}\:{or}\:\mathrm{5} \\ $$$${C}=\mathrm{0}\Rightarrow{D}=\mathrm{0},\mathrm{4},\mathrm{8}\:\:\left[\because\:\mathrm{4}\mid{ABCD}\right] \\ $$$${C}=\mathrm{5}\Rightarrow{D}=\mathrm{2},\mathrm{6}\:\:\:\:\:\:\left[\because\:\mathrm{4}\mid{ABCD}\right] \\ $$$${CD}=\mathrm{00},\mathrm{04},\mathrm{08},\mathrm{52},\mathrm{56} \\ $$$${BCD}=\mathrm{000},\mathrm{900},\mathrm{504},\mathrm{108},\mathrm{252},\mathrm{756}\:\:\left[\because\mathrm{9}\mid{BCD}\right] \\ $$$${B}=\mathrm{0}\Rightarrow{A}=\mathrm{3},\mathrm{6},\mathrm{9}\:\:\:\:\left[\because\:\mathrm{6}\mid{AB}\:\right] \\ $$$${B}=\mathrm{9},\mathrm{5},\mathrm{1},\mathrm{7}\Rightarrow{A}\:{has}\:{no}\:{value}\:\left[\because\:\mathrm{6}\mid{AB}\:\right] \\ $$$${B}=\mathrm{2}\Rightarrow{A}=\mathrm{1},\mathrm{4},\mathrm{7}\:\:\:\:\:\:\left[\because\:\mathrm{6}\mid{AB}\:\right] \\ $$$$ \\ $$$${A}=\mathrm{1},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{7},\mathrm{9} \\ $$
Commented by JDamian last updated on 26/Feb/23
$${B}\:\mathrm{and}\:{D}\:\mathrm{are}\:\mathrm{even}\:\:\Rightarrow\:\:{BCD}\:\notin\left\{\mathrm{108},\mathrm{504},\mathrm{900}\right\} \\ $$$${C}=\mathrm{5}\:\:\mathrm{because}\:\:\mathrm{B}+{C}+{D}\:\:\mathrm{must}\:\mathrm{be}\:\mathrm{either}\:\mathrm{9}\:\mathrm{or}\:\mathrm{18} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Feb/23
$${My}\:{mistake}\:{sir},{thank}\:{you}! \\ $$
Answered by mr W last updated on 26/Feb/23
$${i}\:{think}\:{there}\:{are}\:{three}\:{such}\:{numbers}: \\ $$$$\mathrm{1252},\:\mathrm{4252},\:\mathrm{7252} \\ $$
Commented by mr W last updated on 26/Feb/23
$${ABCD} \\ $$$${B}={even},\:\leqslant\mathrm{8} \\ $$$${C}=\mathrm{0}\:{or}\:\mathrm{5} \\ $$$${B}+{C}+{D}=\mathrm{9}\:{or}\:\mathrm{18} \\ $$$${if}\:{C}=\mathrm{0}:\:{B}+{D}=\mathrm{9}\:\Rightarrow{D}={odd}\:\Rightarrow{rejected} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{B}+{D}=\mathrm{18}\:\Rightarrow{D}\geqslant\mathrm{10}\:\Rightarrow{impossible} \\ $$$${if}\:{C}=\mathrm{5}:\:{B}+{D}=\mathrm{4}\:\Rightarrow\left({B},\:{D}\right)=\left(\mathrm{0},\mathrm{4}\right)\:{or}\:\left(\mathrm{4},\mathrm{0}\right)\:{or}\:\left(\mathrm{2},\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{B}+{D}=\mathrm{13}\:\Rightarrow{D}={odd}\:\Rightarrow{rejected} \\ $$$${A}\mathrm{054},\:{A}\mathrm{450},\:{A}\mathrm{252}\:{are}\:{remaining}. \\ $$$${A}\mathrm{054}:\:{A}=\mathrm{6}\:{or}\:\mathrm{9}\:\Rightarrow{not}\:{divisible}\:{by}\:\mathrm{4}\:\Rightarrow{rejected} \\ $$$${A}\mathrm{450}:\:{A}=\mathrm{2}\:{or}\:\mathrm{5}\:{or}\:\mathrm{8}\:\Rightarrow{not}\:{divisible}\:{by}\:\mathrm{4}\:\Rightarrow{rejected} \\ $$$${A}\mathrm{252}:\:{A}=\mathrm{1}\:{or}\:\mathrm{4}\:{or}\:\mathrm{7}\:\Rightarrow{divisible}\:{by}\:\mathrm{4}\:\Rightarrow{ok} \\ $$$${so}\:{the}\:{number}\:{is}\:\mathrm{1252},\:\mathrm{4252}\:{or}\:\mathrm{7252}. \\ $$
Answered by manxsol last updated on 26/Feb/23
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}{{A}}&\hline{{B}}&\hline{{C}}&\hline{{D}}&\hline{}\\{}&\hline{}&\hline{\mathrm{0}}&\hline{}&\hline{\mathrm{5}}\\{}&\hline{}&\hline{\mathrm{5}}&\hline{}&\hline{\mathrm{5}}\\{}&\hline{\mathrm{5}}&\hline{\mathrm{0}}&\hline{\mathrm{4}}&\hline{\mathrm{4},\mathrm{9}}\\{}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{8}}&\hline{\mathrm{4},\mathrm{9}}\\{}&\hline{\mathrm{9}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{4},\mathrm{9}}\\{}&\hline{\mathrm{2}}&\hline{\mathrm{5}}&\hline{\mathrm{2}}&\hline{\mathrm{4},\mathrm{9}}\\{}&\hline{\mathrm{7}}&\hline{\mathrm{5}}&\hline{\mathrm{6}}&\hline{\mathrm{4},\mathrm{9}}\\{}&\hline{\mathrm{2}}&\hline{\mathrm{5}}&\hline{\mathrm{2}}&\hline{\mathrm{6}=\mathrm{2}\wedge\mathrm{3}}\\{\mathrm{1},\mathrm{4},\mathrm{7}}&\hline{\mathrm{2}}&\hline{\mathrm{5}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}\\\hline\end{array} \\ $$$$ \\ $$