Menu Close

Question-188259




Question Number 188259 by alcohol last updated on 27/Feb/23
Answered by mr W last updated on 27/Feb/23
m=m_0 e^(kt)   kv_0 =g  (a)  ((d(mv))/dt)=−mg  v(dm/dt)+m(dv/dt)=−mg  vm_0 ke^(kt) +m_0 e^(kt) (dv/dt)=−m_0 e^(kt) g  ⇒kv+(dv/dt)=−g   ✓  (b)  (dv/dt)=−(kv+g)  ∫_v_0  ^v (dv/(kv+g))=−∫_0 ^t dt  ln ((kv+g)/(kv_0 +g))=−kt  ((kv+g)/(kv_0 +g))=e^(−kt)   at highest point: v=0  ((0+g)/(g+g))=e^(−kt)   e^(−kt) =(1/2)  m=m_0 e^(kt) =m_0 ((1/2))^(−1) =2m_0    ✓
$${m}={m}_{\mathrm{0}} {e}^{{kt}} \\ $$$${kv}_{\mathrm{0}} ={g} \\ $$$$\left({a}\right) \\ $$$$\frac{{d}\left({mv}\right)}{{dt}}=−{mg} \\ $$$${v}\frac{{dm}}{{dt}}+{m}\frac{{dv}}{{dt}}=−{mg} \\ $$$${vm}_{\mathrm{0}} {ke}^{{kt}} +{m}_{\mathrm{0}} {e}^{{kt}} \frac{{dv}}{{dt}}=−{m}_{\mathrm{0}} {e}^{{kt}} {g} \\ $$$$\Rightarrow{kv}+\frac{{dv}}{{dt}}=−{g}\:\:\:\checkmark \\ $$$$\left({b}\right) \\ $$$$\frac{{dv}}{{dt}}=−\left({kv}+{g}\right) \\ $$$$\int_{{v}_{\mathrm{0}} } ^{{v}} \frac{{dv}}{{kv}+{g}}=−\int_{\mathrm{0}} ^{{t}} {dt} \\ $$$$\mathrm{ln}\:\frac{{kv}+{g}}{{kv}_{\mathrm{0}} +{g}}=−{kt} \\ $$$$\frac{{kv}+{g}}{{kv}_{\mathrm{0}} +{g}}={e}^{−{kt}} \\ $$$${at}\:{highest}\:{point}:\:{v}=\mathrm{0} \\ $$$$\frac{\mathrm{0}+{g}}{{g}+{g}}={e}^{−{kt}} \\ $$$${e}^{−{kt}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${m}={m}_{\mathrm{0}} {e}^{{kt}} ={m}_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{−\mathrm{1}} =\mathrm{2}{m}_{\mathrm{0}} \:\:\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *