Menu Close

Question-188392




Question Number 188392 by yawa7373 last updated on 28/Feb/23
Commented by Rasheed.Sindhi last updated on 28/Feb/23
sir mr W , please see my third answer  to Q#188327 in which I′ve used  derivative.
$$\boldsymbol{{sir}}\:{mr}\:{W}\:,\:{please}\:{see}\:{my}\:{third}\:{answer} \\ $$$${to}\:{Q}#\mathrm{188327}\:{in}\:{which}\:{I}'{ve}\:{used} \\ $$$${derivative}. \\ $$
Commented by mr W last updated on 01/Mar/23
very nice approach sir!
$${very}\:{nice}\:{approach}\:{sir}! \\ $$
Commented by Rasheed.Sindhi last updated on 01/Mar/23
ThanX a LOT  sir!
$$\mathcal{T}{han}\mathcal{X}\:{a}\:\mathcal{LOT}\:\:\boldsymbol{{sir}}! \\ $$
Answered by mr W last updated on 28/Feb/23
Q1  (a)  θ=((αt^2 )/2)  ⇒t=(√((2θ)/α))=(√((2×2π)/(4.5×10^(−3) )))=52.844 s  (b)  ω=αt=4.5×10^(−3) ×52.844=0.238 rad/s                                                 or 13.625°/s
$${Q}\mathrm{1} \\ $$$$\left({a}\right) \\ $$$$\theta=\frac{\alpha{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow{t}=\sqrt{\frac{\mathrm{2}\theta}{\alpha}}=\sqrt{\frac{\mathrm{2}×\mathrm{2}\pi}{\mathrm{4}.\mathrm{5}×\mathrm{10}^{−\mathrm{3}} }}=\mathrm{52}.\mathrm{844}\:{s} \\ $$$$\left({b}\right) \\ $$$$\omega=\alpha{t}=\mathrm{4}.\mathrm{5}×\mathrm{10}^{−\mathrm{3}} ×\mathrm{52}.\mathrm{844}=\mathrm{0}.\mathrm{238}\:{rad}/{s} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\mathrm{13}.\mathrm{625}°/{s} \\ $$
Answered by mr W last updated on 28/Feb/23
Q2  r=((0.5)/2)=0.25 m  (a)  ω=60 rpm=((60×2π)/(60))=6.28 rad/s  (b)  v=ωr=6.28×0.25=3.41 m/s
$${Q}\mathrm{2} \\ $$$${r}=\frac{\mathrm{0}.\mathrm{5}}{\mathrm{2}}=\mathrm{0}.\mathrm{25}\:{m} \\ $$$$\left({a}\right) \\ $$$$\omega=\mathrm{60}\:{rpm}=\frac{\mathrm{60}×\mathrm{2}\pi}{\mathrm{60}}=\mathrm{6}.\mathrm{28}\:{rad}/{s} \\ $$$$\left({b}\right) \\ $$$${v}=\omega{r}=\mathrm{6}.\mathrm{28}×\mathrm{0}.\mathrm{25}=\mathrm{3}.\mathrm{41}\:{m}/{s} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *