Menu Close

Question-188463




Question Number 188463 by emilagazade last updated on 01/Mar/23
Answered by mr W last updated on 01/Mar/23
((AO)/(CO))=((sin 30)/(sin 70))  ((BO)/(AO))=((sin 40)/(sin α))  ((CO)/(BO))=((sin (20−α))/(sin 20))  (i)×(ii)×(iii):  1=((sin 30×sin 40×sin (20−α))/(sin 70×sin α×sin 20))  ((sin 20)/(tan α))−cos 20=((sin 70×sin 20)/(sin 30×sin 40))  tan α=(1/(((sin 70)/(sin 30×sin 40))+(1/(tan 20))))  ⇒α=tan^(−1) ((1/(((sin 70)/(sin 30×sin 40))+(1/(tan 20)))))=10°
$$\frac{{AO}}{{CO}}=\frac{\mathrm{sin}\:\mathrm{30}}{\mathrm{sin}\:\mathrm{70}} \\ $$$$\frac{{BO}}{{AO}}=\frac{\mathrm{sin}\:\mathrm{40}}{\mathrm{sin}\:\alpha} \\ $$$$\frac{{CO}}{{BO}}=\frac{\mathrm{sin}\:\left(\mathrm{20}−\alpha\right)}{\mathrm{sin}\:\mathrm{20}} \\ $$$$\left({i}\right)×\left({ii}\right)×\left({iii}\right): \\ $$$$\mathrm{1}=\frac{\mathrm{sin}\:\mathrm{30}×\mathrm{sin}\:\mathrm{40}×\mathrm{sin}\:\left(\mathrm{20}−\alpha\right)}{\mathrm{sin}\:\mathrm{70}×\mathrm{sin}\:\alpha×\mathrm{sin}\:\mathrm{20}} \\ $$$$\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{tan}\:\alpha}−\mathrm{cos}\:\mathrm{20}=\frac{\mathrm{sin}\:\mathrm{70}×\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{30}×\mathrm{sin}\:\mathrm{40}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\frac{\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\mathrm{30}×\mathrm{sin}\:\mathrm{40}}+\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}} \\ $$$$\Rightarrow\alpha=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\frac{\mathrm{sin}\:\mathrm{70}}{\mathrm{sin}\:\mathrm{30}×\mathrm{sin}\:\mathrm{40}}+\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}}}\right)=\mathrm{10}° \\ $$
Commented by universe last updated on 02/Mar/23
sin70×sin α×sin 20 = sin 30×sin 40×sin (20−α)  sin 70×sin α×sin 20 = (1/2)2sin 20×cos 20×sin(20−α)  sin 70×sin α = sin 70×sin (20−α)  sin α = sin (20−α)  α= 20−α  2α = 20   α = 10°
$$\mathrm{sin70}×\mathrm{sin}\:\alpha×\mathrm{sin}\:\mathrm{20}\:=\:\mathrm{sin}\:\mathrm{30}×\mathrm{sin}\:\mathrm{40}×\mathrm{sin}\:\left(\mathrm{20}−\alpha\right) \\ $$$$\mathrm{sin}\:\mathrm{70}×\mathrm{sin}\:\alpha×\cancel{\mathrm{sin}\:\mathrm{20}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{2}\cancel{\mathrm{sin}\:\mathrm{20}}×\mathrm{cos}\:\mathrm{20}×\mathrm{sin}\left(\mathrm{20}−\alpha\right) \\ $$$$\mathrm{sin}\:\mathrm{70}×\mathrm{sin}\:\alpha\:=\:\mathrm{sin}\:\mathrm{70}×\mathrm{sin}\:\left(\mathrm{20}−\alpha\right) \\ $$$$\mathrm{sin}\:\alpha\:=\:\mathrm{sin}\:\left(\mathrm{20}−\alpha\right) \\ $$$$\alpha=\:\mathrm{20}−\alpha \\ $$$$\mathrm{2}\alpha\:=\:\mathrm{20}\: \\ $$$$\alpha\:=\:\mathrm{10}°\: \\ $$
Commented by mr W last updated on 02/Mar/23
great!
$${great}! \\ $$
Commented by emilagazade last updated on 02/Mar/23
tanks a lot
$${tanks}\:{a}\:{lot} \\ $$
Commented by emilagazade last updated on 02/Mar/23
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$
Answered by HeferH last updated on 02/Mar/23
Commented by HeferH last updated on 02/Mar/23
20° = 2α  α = 10°
$$\mathrm{20}°\:=\:\mathrm{2}\alpha \\ $$$$\alpha\:=\:\mathrm{10}° \\ $$
Commented by mr W last updated on 02/Mar/23
��
Commented by emilagazade last updated on 02/Mar/23
Nice, thank you
$${Nice},\:{thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *