Question Number 188845 by ajfour last updated on 07/Mar/23
Answered by a.lgnaoui last updated on 07/Mar/23
$$\bigtriangleup{OAB}\:\:\:\left({recrangle}\:{en}\:{O}\right) \\ $$$${AB}={a}+\frac{{a}\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\:\:\Rightarrow{AH}=\frac{{a}}{\mathrm{2}}+\frac{{a}\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$${OA}={OB}\:={R} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{4}}=\frac{{AH}}{{R}}\Rightarrow{R}=\frac{\mathrm{2}{AH}}{\:\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{R}}=\mathrm{1}+\sqrt{\mathrm{2}} \\ $$
Commented by a.lgnaoui last updated on 07/Mar/23
Commented by mr W last updated on 08/Mar/23
$${clearly}\:{wrong}! \\ $$$${a}\:{ball}\:{within}\:{the}\:{cube}\:{can}\:{not}\:{be}\:{larger} \\ $$$${than}\:{the}\:{cube}\:{itself}! \\ $$
Answered by mr W last updated on 08/Mar/23
Commented by mr W last updated on 08/Mar/23
$${A}\left({r},{r},{r}\right) \\ $$$${P}\left(\mathrm{1},\mathrm{0},\mathrm{0}\right) \\ $$$$\overset{\rightarrow} {{PQ}}=\left(−\mathrm{1},\mathrm{1},\mathrm{1}\right) \\ $$$$\overset{\rightarrow} {{PA}}=\left({r}−\mathrm{1},{r},{r}\right) \\ $$$$\left({r}−\mathrm{1},{r},{r}\right)×\left(−\mathrm{1},\mathrm{1},\mathrm{1}\right)=\left(\mathrm{0},\mathrm{2}{r}−\mathrm{1},\mathrm{2}{r}−\mathrm{1}\right) \\ $$$${r}=\frac{\sqrt{\mathrm{2}\left(\mathrm{2}{r}−\mathrm{1}\right)^{\mathrm{2}} }}{\:\sqrt{\mathrm{3}}}={distance}\:{from}\:{A}\:{to}\:{PQ} \\ $$$$\mathrm{5}{r}^{\mathrm{2}} −\mathrm{8}{r}+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{\mathrm{4}−\sqrt{\mathrm{6}}}{\mathrm{5}}\approx\mathrm{0}.\mathrm{3101}\:<\:\mathrm{0}.\mathrm{5}\:\left({within}\:{cube}\right) \\ $$
Commented by ajfour last updated on 08/Mar/23