Question Number 189127 by Mingma last updated on 12/Mar/23
Answered by Rasheed.Sindhi last updated on 12/Mar/23
$$\frac{{p}!−\left({p}−\mathrm{1}\right)!}{\left({p}−\mathrm{1}\right)!}=\mathrm{2023} \\ $$$$\frac{\left({p}−\mathrm{1}\right)!\left[{p}−\mathrm{1}\right]}{\left({p}−\mathrm{1}\right)!}=\mathrm{2023} \\ $$$${p}−\mathrm{1}=\mathrm{2023} \\ $$$${p}=\mathrm{2024} \\ $$
Commented by Mingma last updated on 13/Mar/23
Excellent!
Answered by Rasheed.Sindhi last updated on 13/Mar/23
$$\frac{{p}!−\left({p}−\mathrm{1}\right)!}{\left({p}−\mathrm{1}\right)!}=\mathrm{2023} \\ $$$$\frac{{p}!}{\left({p}−\mathrm{1}\right)!}−\frac{\cancel{\left({p}−\mathrm{1}\right)!}}{\cancel{\left({p}−\mathrm{1}\right)!}}=\mathrm{2023} \\ $$$$\frac{\cancel{\left({p}−\mathrm{1}\right)!}×{p}}{\cancel{\left({p}−\mathrm{1}\right)!}}=\mathrm{2023}+\mathrm{1} \\ $$$${p}=\mathrm{1024} \\ $$
Answered by Rasheed.Sindhi last updated on 13/Mar/23
$$\frac{{p}!−\left({p}−\mathrm{1}\right)!}{\left({p}−\mathrm{1}\right)!}=\mathrm{2023} \\ $$$$\frac{{p}!−\left({p}−\mathrm{1}\right)!}{\left({p}−\mathrm{1}\right)!}+\mathrm{1}=\mathrm{2023}+\mathrm{1} \\ $$$$\frac{{p}!−\cancel{\left({p}−\mathrm{1}\right)!}+\cancel{\left({p}−\mathrm{1}\right)!}}{\left({p}−\mathrm{1}\right)!}=\mathrm{2024} \\ $$$$\frac{\left({p}−\mathrm{1}\right)!×{p}}{\left({p}−\mathrm{1}\right)!}=\mathrm{2024} \\ $$$${p}=\mathrm{2024} \\ $$