Question Number 189140 by 073 last updated on 12/Mar/23
Answered by Ar Brandon last updated on 12/Mar/23
$${x}>\mathrm{0}\:\wedge\:{x}\geqslant\mathrm{1}\:\Rightarrow{x}\geqslant\mathrm{1} \\ $$$$\mathrm{4}−\mathrm{ln}{x}\geqslant\mathrm{3}\sqrt{\mathrm{ln}{x}}\:,\:{t}^{\mathrm{2}} =\mathrm{ln}{x} \\ $$$$\mathrm{4}−{t}^{\mathrm{2}} \geqslant\mathrm{3}{t}\:\Rightarrow\:{t}^{\mathrm{2}} +\mathrm{3}{t}−\mathrm{4}\:\leqslant\:\mathrm{0} \\ $$$$\left({t}+\mathrm{4}\right)\left({t}−\mathrm{1}\right)\leqslant\mathrm{0}\:\Rightarrow−\mathrm{4}\leqslant{t}\leqslant\mathrm{1} \\ $$$$\mathrm{0}\leqslant{t}^{\mathrm{2}} \leqslant\mathrm{1}\:\Rightarrow\mathrm{0}\leqslant\mathrm{ln}{x}\leqslant\mathrm{1} \\ $$$$\mathrm{1}\leqslant{x}\leqslant{e}\:\Rightarrow{x}\:\in\:\left[\mathrm{1},\:{e}\right]\: \\ $$$$\Rightarrow{b}−{a}={e}−\mathrm{1} \\ $$
Commented by manxsol last updated on 12/Mar/23
$${Sr}.{Ar}\:{Brandon}\:,{con}\:{todo}\:{respeto}. \\ $$$${exercise}={log}\left({x}\right)\:\:\:\:{base}\:\mathrm{10} \\ $$$${you}\:{exercise}\:{ln}\left({x}\right)\:\:\:\:{base}\:{e} \\ $$
Commented by Ar Brandon last updated on 12/Mar/23