Question Number 189269 by Rupesh123 last updated on 14/Mar/23
Answered by a.lgnaoui last updated on 15/Mar/23
$${posons}:{E}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{\mathrm{15}}{{a}+{b}+{c}} \\ $$$$\left({a}+{b}+{c}\right)×{E}=\mathrm{15}+\left({a}+{b}+{c}\right)\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right) \\ $$$$=\mathrm{18}+\frac{{a}\left({b}+{c}\right)}{{bc}}+\frac{{b}\left({a}+{c}\right)}{{ac}}+\frac{{c}\left({a}+{b}\right)}{{ab}} \\ $$$$=\mathrm{18}+\frac{\left(\mathrm{1}−\mathrm{2}{abc}−{ab}\right){c}+{ab}\left({a}+{b}\right)}{{abc}} \\ $$$$=\mathrm{18}+\left(\frac{\mathrm{1}−\mathrm{2}{abc}−{ab}}{{ab}}\:\:+\frac{{a}+{b}}{{c}}\right)\:\:\left({i}\right) \\ $$$$\mathrm{2}{abc}+\left({a}+{b}\right){c}+{ab}=\mathrm{1}\:\:\:\left({a}>\mathrm{0},{b}>\mathrm{0},{c}>\mathrm{0}\right) \\ $$$$\mathrm{1}−\mathrm{2}{abc}−{ab}=\left({a}+{b}\right){c} \\ $$$$\begin{cases}{{E}\left({a}+{b}+{c}\right)=\mathrm{18}+\frac{\left({a}+{b}\right){c}}{{ab}}+\frac{{a}+{b}}{{c}}}\\{{E}=\frac{\mathrm{18}}{\left({a}+{b}+{c}\right)}+\frac{\left.\left[\left({a}+{b}+{c}\right)−{c}\right)\right]{c}}{{ab}\left({a}+{b}+{c}\right)}+\frac{\left({a}+{b}+{c}\right)−{c}}{{c}\left({a}+{b}+{c}\right)}}\end{cases} \\ $$$${posons}\:\left(\:{a}+{b}+{c}\right)=\lambda \\ $$$$\frac{\mathrm{18}}{\lambda}+\frac{\left(\lambda−{c}\right){c}}{\lambda{ab}}+\frac{\lambda−{c}}{\lambda{c}}=\frac{\mathrm{18}}{\lambda}+\frac{\lambda−{c}}{\lambda}\left(\frac{{c}}{{ab}}+\frac{\mathrm{1}}{{c}}\right) \\ $$$$=\frac{\mathrm{1}}{\lambda}\left[\mathrm{18}+\left(\frac{\lambda}{{c}}−\mathrm{1}\right)\left(\mathrm{1}+\frac{{c}^{\mathrm{2}} }{{ab}}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\lambda}\left[\mathrm{17}+\left(\frac{\left({a}+{b}\right){c}}{{ab}}+\frac{\lambda}{{c}}\:\right)\right. \\ $$$$=\frac{\mathrm{17}{abc}}{\left({a}+{b}+{c}\right)}+\frac{\left({a}+{b}\right){c}}{\left({a}+{b}+{c}\right){ab}}+\frac{\mathrm{1}}{{c}} \\ $$$${pour}\:{tout}\:\:{a}\:{b}\:{c}>\mathrm{0}\:\:\:\:{abc}>\left({a}+{b}+{c}\right) \\ $$$$\Rightarrow\frac{{abc}}{\lambda}>\mathrm{1}\:\:\:\frac{\left({a}+{b}\right){c}}{\lambda{ab}}+\frac{\mathrm{1}}{{c}}>\mathrm{0}\Rightarrow\boldsymbol{{E}}\geqslant\mathrm{17} \\ $$$$ \\ $$$$\Rightarrow\frac{\mathrm{1}}{\boldsymbol{{a}}}+\frac{\mathrm{1}}{\boldsymbol{{b}}}+\frac{\mathrm{1}}{\boldsymbol{{c}}}+\frac{\mathrm{15}}{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}}\geqslant\mathrm{16} \\ $$$${i} \\ $$