Menu Close

Question-189270




Question Number 189270 by Rupesh123 last updated on 14/Mar/23
Commented by maths_plus last updated on 14/Mar/23
good
$$\mathrm{good} \\ $$
Answered by HeferH last updated on 14/Mar/23
 x^2 −a^2 = b^2 −(a−b)^2    x^2 = a^2 +b^2  − (a^2 +b^2 −2ab)   x^2  = 2ab
$$\:\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} =\:\mathrm{b}^{\mathrm{2}} −\left(\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{x}^{\mathrm{2}} =\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \:−\:\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{2ab}\right) \\ $$$$\:\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{2ab} \\ $$
Commented by manxsol last updated on 14/Mar/23
excelent
$${excelent} \\ $$
Answered by manxsol last updated on 14/Mar/23
x^2 =b^2 +b^2 −2b.bcos(180−θ)  x^2 =2b^2 +2b^2 cosθ  cosθ=((a−b)/b)  x^2 =2b^2 (1+((a−b)/b))  x^2 =2b^2 (a/b)  x^2 =2ab
$${x}^{\mathrm{2}} ={b}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{b}.{bcos}\left(\mathrm{180}−\theta\right) \\ $$$${x}^{\mathrm{2}} =\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} {cos}\theta \\ $$$${cos}\theta=\frac{{a}−{b}}{{b}} \\ $$$${x}^{\mathrm{2}} =\mathrm{2}{b}^{\mathrm{2}} \left(\mathrm{1}+\frac{{a}−{b}}{{b}}\right) \\ $$$${x}^{\mathrm{2}} =\mathrm{2}{b}^{\mathrm{2}} \frac{{a}}{{b}} \\ $$$${x}^{\mathrm{2}} =\mathrm{2}{ab} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *