Menu Close

Question-189309




Question Number 189309 by cherokeesay last updated on 14/Mar/23
Answered by som(math1967) last updated on 14/Mar/23
Commented by som(math1967) last updated on 14/Mar/23
OA=a+2r   OB^2 =(a+2r)^2 −a^2   DC=a+a+r−r=2a  OB^2 =DC^2   (a+2r)^2 −a^2 =4a^2   ⇒4a^2 −4ar−4r^2 =0  ⇒(a^2 /r^2 ) −(a/r) −1=0  ⇒(a/r)=((1+(√(1^2 +4.1)))/2)=(((√5)+1)/2)   ∴ (a/r)+1=((3+(√5))/2)=((6+2(√5))/4)=((((√5)+1)/2))^2 =ϕ^2
$${OA}={a}+\mathrm{2}{r}\: \\ $$$${OB}^{\mathrm{2}} =\left({a}+\mathrm{2}{r}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$${DC}={a}+{a}+{r}−{r}=\mathrm{2}{a} \\ $$$${OB}^{\mathrm{2}} ={DC}^{\mathrm{2}} \\ $$$$\left({a}+\mathrm{2}{r}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ar}−\mathrm{4}{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{a}^{\mathrm{2}} }{{r}^{\mathrm{2}} }\:−\frac{{a}}{{r}}\:−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\frac{{a}}{{r}}=\frac{\mathrm{1}+\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{4}.\mathrm{1}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$$$\:\therefore\:\frac{{a}}{{r}}+\mathrm{1}=\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\frac{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}=\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\varphi^{\mathrm{2}} \\ $$$$ \\ $$
Commented by cherokeesay last updated on 14/Mar/23
Nice thank you.
$${Nice}\:{thank}\:{you}. \\ $$
Commented by horsebrand11 last updated on 15/Mar/23
OA= a+r ?
$${OA}=\:{a}+{r}\:? \\ $$
Commented by som(math1967) last updated on 15/Mar/23
OA=rad of quadrant +rad. of  circle  rad of quadrant=a+r,rad of circle=r  ∴OA= a+r+r=a+2r
$${OA}={rad}\:{of}\:{quadrant}\:+{rad}.\:{of} \\ $$$${circle} \\ $$$${rad}\:{of}\:{quadrant}={a}+{r},{rad}\:{of}\:{circle}={r} \\ $$$$\therefore{OA}=\:{a}+{r}+{r}={a}+\mathrm{2}{r} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *