Question Number 189428 by Rupesh123 last updated on 16/Mar/23
Answered by BaliramKumar last updated on 16/Mar/23
$${tanx}\:{tan}\left(\mathrm{60}°\:+\:{x}\right)\:{tan}\left(\mathrm{60}°\:−\:{x}\right)\: \\ $$$${tanx}\left[\frac{{tan}\mathrm{60}°\:+\:{tanx}}{\mathrm{1}−{tan}\mathrm{60}°\:{tanx}}\right]\left[\frac{{tan}\mathrm{60}°\:−\:{tanx}}{\mathrm{1}\:+\:{tan}\mathrm{60}°\:{tanx}}\right] \\ $$$${tanx}\left[\frac{\sqrt{\mathrm{3}}\:+\:{tanx}}{\mathrm{1}−\sqrt{\mathrm{3}}\:{tanx}}\right]\left[\frac{\sqrt{\mathrm{3}}\:−\:{tanx}}{\mathrm{1}\:+\:\sqrt{\mathrm{3}}\:{tanx}}\right] \\ $$$${tanx}\left[\frac{\left(\mathrm{3}\:−\:{tan}^{\mathrm{2}} {x}\right.}{\mathrm{1}−\mathrm{3}\:{tan}^{\mathrm{2}} {x}}\right] \\ $$$$\left[\frac{\left(\mathrm{3}{tanx}\:−\:{tan}^{\mathrm{3}} {x}\right.}{\mathrm{1}−\mathrm{3}\:{tan}^{\mathrm{2}} {x}}\right]\:=\:{tan}\mathrm{3}{x} \\ $$$$ \\ $$
Commented by Rupesh123 last updated on 18/Mar/23
Excellent!