Question Number 189603 by normans last updated on 19/Mar/23
Answered by a.lgnaoui last updated on 19/Mar/23
$$\bigtriangleup{ADF}:\:\:\:\:\:\measuredangle{ADF}=\mathrm{90}−\mathrm{18}=\mathrm{72} \\ $$$$\:\frac{\mathrm{sin}\:\mathrm{18}}{\mathrm{DF}}=\frac{\mathrm{sin}\:\mathrm{72}}{\mathrm{AF}}\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\bigtriangleup{ABF}\::\:\:\measuredangle{BAF}=\mathrm{48}+\mathrm{18}=\mathrm{66};\:\:\measuredangle{ABF}=\mathrm{90}−\mathrm{66}=\mathrm{24} \\ $$$$\frac{\mathrm{sin}\:\mathrm{24}}{\mathrm{AF}}=\frac{\mathrm{sin}\:\mathrm{66}}{\mathrm{BF}}\:\:\:\:\mathrm{BF}=\mathrm{BD}+\mathrm{DF}=\mathrm{6}+\mathrm{DF} \\ $$$$\frac{\mathrm{sin}\:\mathrm{24}}{\mathrm{AF}}=\frac{\mathrm{sin}\:\mathrm{66}}{\mathrm{6}+\mathrm{DF}}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{2}\right)\Rightarrow\begin{cases}{\mathrm{DF}=\frac{\mathrm{AFsin}\:\mathrm{18}}{\mathrm{sin}\:\mathrm{72}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{3}\right)}\\{\mathrm{6sin}\:\mathrm{24}+\mathrm{DFsin}\:\mathrm{24}=\mathrm{AFsin}\:\mathrm{66}}\end{cases} \\ $$$$ \\ $$$$\mathrm{DF}=\frac{\mathrm{AFsin}\:\mathrm{66}−\mathrm{6sin}\:\mathrm{66}}{\mathrm{sin}\:\mathrm{24}}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$$\mathrm{AFsin}\:\mathrm{18sin}\:\mathrm{24}=\mathrm{AFsin}\:\mathrm{72sin}\:\mathrm{66}−\mathrm{6sin}\:\mathrm{72sin}\:\mathrm{66} \\ $$$$\mathrm{6sin}\:\mathrm{72sin}\:\mathrm{66}=\mathrm{AF}\left(\mathrm{sin}\:\mathrm{72sin}\:\mathrm{66}−\mathrm{sin}\:\mathrm{18sin}\:\mathrm{24}\right) \\ $$$$\mathrm{AF}=\frac{\mathrm{6sin}\:\mathrm{72sin}\:\mathrm{66}}{\mathrm{sin}\:\mathrm{72sin}\:\mathrm{66}−\mathrm{sin}\:\mathrm{18sin}\:\mathrm{24}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{AF}=\frac{}{}\:\:\:\:\Rightarrow{DF}=\frac{}{} \\ $$$$\mathrm{AD}=\mathrm{DFsin}\:\mathrm{18}=\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{5}\right) \\ $$$$\bigtriangleup\left({FCD}\right)\:\:\:\measuredangle{CDF}=\mathrm{90}−{x} \\ $$$${CD}^{\mathrm{2}} ={FC}^{\mathrm{2}} +{FD}^{\mathrm{2}} ={FD}^{\mathrm{2}} +{CD}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x} \\ $$$${CD}=\frac{{FD}}{\mathrm{sin}\:{x}} \\ $$$$ \\ $$$$\bigtriangleup{ACD}\:\:\:\:\:\:\frac{\mathrm{sin}\:{x}}{\mathrm{AD}}\:=\frac{\mathrm{sin}\:\left(\mathrm{18}+{x}\right)}{{AC}} \\ $$$$\frac{\mathrm{sin}\:{x}}{{DF}\mathrm{sin}\:\mathrm{18}}=\frac{\mathrm{sin}\:\left(\mathrm{18}+\boldsymbol{{x}}\right)}{{AF}+\frac{\mathrm{DF}}{\mathrm{tan}\:{x}}} \\ $$$$\mathrm{AFsin}\:\mathrm{X}+\mathrm{DFcos}\:\mathrm{X}=\mathrm{DFsin}\:\mathrm{18}\left(\mathrm{sin}\:\mathrm{18cos}\:{x}+\mathrm{cos}\:\mathrm{18sin}\:{x}\right) \\ $$$$\mathrm{sin}\:{x}\left(\mathrm{AF}−\mathrm{DFsin}\:\mathrm{18cos}\:\mathrm{18}\right)=\mathrm{cos}\:{x}\left(\mathrm{DFsin}\:^{\mathrm{2}} \mathrm{18}−\mathrm{DF}\right) \\ $$$$\: \\ $$$$\:\mathrm{tan}\:{x}=\frac{{DF}\left(\mathrm{sin}\:^{\mathrm{2}} \mathrm{18}−\mathrm{1}\right)}{{AF}−{DF}\mathrm{sin}\:\mathrm{18cos}\:\mathrm{18}} \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{tan}\:{x}=\:\:\:\:\:\left[\frac{{DF}\mathrm{sin}\:\mathrm{28}}{{AF}\left(\mathrm{1}−\frac{{DF}}{\mathrm{2}{AF}}\mathrm{sin}\:\mathrm{36}\right.}\right] \\ $$$$\:\:\:\:\:\:\:\frac{{DF}}{{AF}}=\frac{\mathrm{sin}\:\mathrm{18}}{\mathrm{sin}\:\mathrm{72}}\:\: \\ $$$$=\frac{{DF}}{{AF}}×\frac{−\mathrm{cos}\:^{\mathrm{2}} \mathrm{18}}{\left(\mathrm{2}{AF}−{DF}\mathrm{sin}\:\mathrm{36}\right)}×\mathrm{2}{AF} \\ $$$$=\frac{\mathrm{2}{DF}\mathrm{cos}^{\mathrm{2}} \mathrm{18}\:}{{DF}\mathrm{sin}\:\mathrm{36}−\mathrm{2}{AF}} \\ $$$$\mathrm{tan}\:{x}=\frac{\mathrm{2}{DF}\mathrm{cos}\:^{\mathrm{2}} \mathrm{18}}{{DF}\left(\mathrm{sin}\:\mathrm{36}−\frac{\mathrm{2}{AF}}{{DF}}\right)} \\ $$$$=\frac{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{18}}{\left(\mathrm{sin}\:\mathrm{36}−\mathrm{2}\frac{\mathrm{sin}\:\mathrm{72}}{\mathrm{sin}\:\mathrm{18}}\right)} \\ $$$$\:\:\mathrm{tan}\:{x}\:\:=\mathrm{0},\mathrm{3249196}… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{18}° \\ $$$$ \\ $$
Commented by mr W last updated on 19/Mar/23
$${if}\:{x}=\mathrm{18}°,\:{then}\:{it}'{s}\:{symmetric},\:{then} \\ $$$$\mathrm{24}°=\mathrm{6}°\:\Rightarrow{therefore}\:{totally}\:{wrong}! \\ $$
Commented by a.lgnaoui last updated on 19/Mar/23
Commented by normans last updated on 20/Mar/23
$${no}\: \\ $$
Answered by mr W last updated on 19/Mar/23
$${say}\:{AF}=\mathrm{1} \\ $$$${DF}=\mathrm{tan}\:\mathrm{18} \\ $$$${BF}=\mathrm{tan}\:\left(\mathrm{48}+\mathrm{18}\right)=\mathrm{tan}\:\mathrm{66} \\ $$$${FC}={BF}×\mathrm{tan}\:\mathrm{6}=\mathrm{tan}\:\mathrm{66}×\mathrm{tan}\:\mathrm{6} \\ $$$$\mathrm{tan}\:{x}=\frac{{DF}}{{FC}}=\frac{\mathrm{tan}\:\mathrm{18}}{\mathrm{tan}\:\mathrm{66}×\mathrm{tan}\:\mathrm{6}} \\ $$$$\Rightarrow{x}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:\mathrm{18}}{\mathrm{tan}\:\mathrm{66}×\mathrm{tan}\:\mathrm{6}}\right)=\mathrm{54}° \\ $$