Menu Close

Question-189608




Question Number 189608 by mr W last updated on 19/Mar/23
Commented by mr W last updated on 19/Mar/23
a bin has the shape of a frustum  as shown. an ant climbs on the outer  surface of the bin from point  A to point B following a path with  constant slope. find the total way  length of the ant.
$${a}\:{bin}\:{has}\:{the}\:{shape}\:{of}\:{a}\:{frustum} \\ $$$${as}\:{shown}.\:{an}\:{ant}\:{climbs}\:{on}\:{the}\:{outer} \\ $$$${surface}\:{of}\:{the}\:{bin}\:{from}\:{point} \\ $$$${A}\:{to}\:{point}\:{B}\:{following}\:{a}\:{path}\:{with} \\ $$$${constant}\:{slope}.\:{find}\:{the}\:{total}\:{way} \\ $$$${length}\:{of}\:{the}\:{ant}. \\ $$
Answered by aleks041103 last updated on 19/Mar/23
lets use cillindrical coords  r(z)=R−((R−r)/h)z  slope = ((vertical)/(horizontal))=(dz/(r(z)dθ))=a=const.  l=∫_0 ^π (√(dz^2 +(rdθ)^2 ))=∫_0 ^π (√(1+(((rdθ)/dz))^2 ))dz=  =(√(1+(1/a^2 )))∫_0 ^π dz=h(√(1+(1/a^2 )))  (dz/(R−((R−r)/h)z))=adθ  ⇒∫_0 ^( h) (dz/(R−((R−r)/h)z))=a∫_0 ^( π) dθ  −(h/(R−r))∫_0 ^( h) ((d(R−((R−r)/h)z))/(R−((R−r)/h)z))=aπ  −(h/(R−r))ln((r/R))=aπ⇒(1/a)=((π(R−r))/(h ln(R/r)))  ⇒l=(√(h^2 +(((π(R−r))/(ln(R/r))))^2 ))
$${lets}\:{use}\:{cillindrical}\:{coords} \\ $$$${r}\left({z}\right)={R}−\frac{{R}−{r}}{{h}}{z} \\ $$$${slope}\:=\:\frac{{vertical}}{{horizontal}}=\frac{{dz}}{{r}\left({z}\right){d}\theta}={a}={const}. \\ $$$${l}=\int_{\mathrm{0}} ^{\pi} \sqrt{{dz}^{\mathrm{2}} +\left({rd}\theta\right)^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\pi} \sqrt{\mathrm{1}+\left(\frac{{rd}\theta}{{dz}}\right)^{\mathrm{2}} }{dz}= \\ $$$$=\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}\int_{\mathrm{0}} ^{\pi} {dz}={h}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{a}^{\mathrm{2}} }} \\ $$$$\frac{{dz}}{{R}−\frac{{R}−{r}}{{h}}{z}}={ad}\theta \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:{h}} \frac{{dz}}{{R}−\frac{{R}−{r}}{{h}}{z}}={a}\int_{\mathrm{0}} ^{\:\pi} {d}\theta \\ $$$$−\frac{{h}}{{R}−{r}}\int_{\mathrm{0}} ^{\:{h}} \frac{{d}\left({R}−\frac{{R}−{r}}{{h}}{z}\right)}{{R}−\frac{{R}−{r}}{{h}}{z}}={a}\pi \\ $$$$−\frac{{h}}{{R}−{r}}{ln}\left(\frac{{r}}{{R}}\right)={a}\pi\Rightarrow\frac{\mathrm{1}}{{a}}=\frac{\pi\left({R}−{r}\right)}{{h}\:{ln}\left({R}/{r}\right)} \\ $$$$\Rightarrow{l}=\sqrt{{h}^{\mathrm{2}} +\left(\frac{\pi\left({R}−{r}\right)}{{ln}\left({R}/{r}\right)}\right)^{\mathrm{2}} } \\ $$
Commented by mr W last updated on 19/Mar/23
very nice solution sir! thanks!
$${very}\:{nice}\:{solution}\:{sir}!\:{thanks}! \\ $$
Answered by mr W last updated on 19/Mar/23
Commented by mr W last updated on 19/Mar/23
slope =(dz/(ρdθ))=k=constant  (z/(R−ρ))=(h/(R−r)) ⇒z=(((R−ρ)h)/(R−r))  dz=−((hdρ)/(R−r))=kρdθ  ((hdρ)/ρ)=−k(R−r)dθ  h∫_R ^r (dρ/ρ)=−k(R−r)∫_0 ^π dθ  hln (r/R)=−k(R−r)π  ⇒k=(h/(π(R−r)))ln (R/r)  length of path  L=h(√(1+(1/k^2 )))=h(√(1+[((π(R−r))/(h ln (R/r)))]^2 ))
$${slope}\:=\frac{{dz}}{\rho{d}\theta}={k}={constant} \\ $$$$\frac{{z}}{{R}−\rho}=\frac{{h}}{{R}−{r}}\:\Rightarrow{z}=\frac{\left({R}−\rho\right){h}}{{R}−{r}} \\ $$$${dz}=−\frac{{hd}\rho}{{R}−{r}}={k}\rho{d}\theta \\ $$$$\frac{{hd}\rho}{\rho}=−{k}\left({R}−{r}\right){d}\theta \\ $$$${h}\int_{{R}} ^{{r}} \frac{{d}\rho}{\rho}=−{k}\left({R}−{r}\right)\int_{\mathrm{0}} ^{\pi} {d}\theta \\ $$$${h}\mathrm{ln}\:\frac{{r}}{{R}}=−{k}\left({R}−{r}\right)\pi \\ $$$$\Rightarrow{k}=\frac{{h}}{\pi\left({R}−{r}\right)}\mathrm{ln}\:\frac{{R}}{{r}} \\ $$$${length}\:{of}\:{path} \\ $$$${L}={h}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}={h}\sqrt{\mathrm{1}+\left[\frac{\pi\left({R}−{r}\right)}{{h}\:\mathrm{ln}\:\frac{{R}}{{r}}}\right]^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *