Menu Close

Question-189700




Question Number 189700 by DAVONG last updated on 20/Mar/23
Commented by Rasheed.Sindhi last updated on 21/Mar/23
a=21
$${a}=\mathrm{21} \\ $$
Commented by mehdee42 last updated on 21/Mar/23
it^, s wrong .because  21^5 ≡^(100) 01⇒21^(2020) ≡^(100) 01⇒21^(2022) ≡^(100) 21^2 ≡^(100) 41
$${it}^{,} {s}\:{wrong}\:.{because} \\ $$$$\mathrm{21}^{\mathrm{5}} \overset{\mathrm{100}} {\equiv}\mathrm{01}\Rightarrow\mathrm{21}^{\mathrm{2020}} \overset{\mathrm{100}} {\equiv}\mathrm{01}\Rightarrow\mathrm{21}^{\mathrm{2022}} \overset{\mathrm{100}} {\equiv}\mathrm{21}^{\mathrm{2}} \overset{\mathrm{100}} {\equiv}\mathrm{41} \\ $$
Answered by mehdee42 last updated on 21/Mar/23
11^2 ≡^(100) 21⇒11^(10) ≡^(100) 21^5 ≡^(100) 01  ⇒11^(2020) ≡^(100) 01⇒11^(2022) ≡^(100) 21⇒a=11
$$\mathrm{11}^{\mathrm{2}} \overset{\mathrm{100}} {\equiv}\mathrm{21}\Rightarrow\mathrm{11}^{\mathrm{10}} \overset{\mathrm{100}} {\equiv}\mathrm{21}^{\mathrm{5}} \overset{\mathrm{100}} {\equiv}\mathrm{01} \\ $$$$\Rightarrow\mathrm{11}^{\mathrm{2020}} \overset{\mathrm{100}} {\equiv}\mathrm{01}\Rightarrow\mathrm{11}^{\mathrm{2022}} \overset{\mathrm{100}} {\equiv}\mathrm{21}\Rightarrow{a}=\mathrm{11} \\ $$
Commented by Rasheed.Sindhi last updated on 22/Mar/23
It′s a^(2021) , not a^(2022)
$${It}'{s}\:{a}^{\mathrm{2021}} ,\:{not}\:{a}^{\mathrm{2022}} \\ $$
Commented by Rasheed.Sindhi last updated on 22/Mar/23
21^5 ≡1(mod 100)  21^(2020) ≡1(mod 100)  21^(2020) ×21≡21(mod 100)  21^(2021) ≡21(mod 100)
$$\mathrm{21}^{\mathrm{5}} \equiv\mathrm{1}\left({mod}\:\mathrm{100}\right) \\ $$$$\mathrm{21}^{\mathrm{2020}} \equiv\mathrm{1}\left({mod}\:\mathrm{100}\right) \\ $$$$\mathrm{21}^{\mathrm{2020}} ×\mathrm{21}\equiv\mathrm{21}\left({mod}\:\mathrm{100}\right) \\ $$$$\mathrm{21}^{\mathrm{2021}} \equiv\mathrm{21}\left({mod}\:\mathrm{100}\right) \\ $$
Answered by talminator2856792 last updated on 22/Mar/23
 ... X Y 1 × 11 =  ... X Y 1 0                                          +   ... Y 1                                      ^�  ^�  ^�  ^� Y^� +1 ^� 1^�        ⇒  11^(...xyz1)  = ...z1       11^(2021)  = ...21    a = 11
$$\:…\:\mathrm{X}\:\mathrm{Y}\:\mathrm{1}\:×\:\mathrm{11}\:=\:\:…\:\mathrm{X}\:\mathrm{Y}\:\mathrm{1}\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:…\:\mathrm{Y}\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bar {\:}\bar {\:}\bar {\:}\bar {\:}\bar {\mathrm{Y}}+\mathrm{1}\bar {\:}\bar {\mathrm{1}} \\ $$$$\: \\ $$$$\:\:\Rightarrow\:\:\mathrm{11}^{…\mathrm{xyz1}} \:=\:…\mathrm{z1} \\ $$$$\: \\ $$$$\:\:\mathrm{11}^{\mathrm{2021}} \:=\:…\mathrm{21} \\ $$$$\:\:{a}\:=\:\mathrm{11} \\ $$$$\: \\ $$
Commented by Rasheed.Sindhi last updated on 22/Mar/23
11^(2021) ≠...21  11^(2021) =...11 :  11^(10) ≡1(mod 100)  (11^(10) )^(202) ≡1^(202) (mod 100)  (11^(2020) ×11≡1×11(mod 100)  11^(2021) ≡11(mod 11)
$$\mathrm{11}^{\mathrm{2021}} \neq…\mathrm{21} \\ $$$$\mathrm{11}^{\mathrm{2021}} =…\mathrm{11}\:: \\ $$$$\mathrm{11}^{\mathrm{10}} \equiv\mathrm{1}\left({mod}\:\mathrm{100}\right) \\ $$$$\left(\mathrm{11}^{\mathrm{10}} \right)^{\mathrm{202}} \equiv\mathrm{1}^{\mathrm{202}} \left({mod}\:\mathrm{100}\right) \\ $$$$\left(\mathrm{11}^{\mathrm{2020}} ×\mathrm{11}\equiv\mathrm{1}×\mathrm{11}\left({mod}\:\mathrm{100}\right)\right. \\ $$$$\mathrm{11}^{\mathrm{2021}} \equiv\mathrm{11}\left({mod}\:\mathrm{11}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *