Menu Close

Question-189807




Question Number 189807 by normans last updated on 22/Mar/23
Answered by a.lgnaoui last updated on 22/Mar/23
   Angle entre verticale et p q(α=arcsin (1/2)=(π/6))  Angle entre Eq et qr est (π/4)  (π/6)+X+(π/4)=π⇒  X=((7π)/(12))
$$\: \\ $$$${Angle}\:{entre}\:{verticale}\:{et}\:{p}\:{q}\left(\alpha={arc}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi}{\mathrm{6}}\right) \\ $$$${Angle}\:{entre}\:{Eq}\:{et}\:{qr}\:{est}\:\frac{\pi}{\mathrm{4}} \\ $$$$\frac{\pi}{\mathrm{6}}+{X}+\frac{\pi}{\mathrm{4}}=\pi\Rightarrow\:\:{X}=\frac{\mathrm{7}\pi}{\mathrm{12}} \\ $$
Commented by a.lgnaoui last updated on 22/Mar/23
Answered by cortano12 last updated on 22/Mar/23
R(2,1,0) ,Q(2,0,1),P(0,1,2)    { ((QR^(→)  = (0,1,−1))),((QP^(→)  =(−2,1,1))) :}   ⇒cos X = ((QR^(→)  .QP^(→) )/(∣QR^(→) ∣ .∣QP^(→) ∣))   ⇒ cos X=((0+1−1)/( (√2).(√6)))= 0  ⇒X = 90°
$$\mathrm{R}\left(\mathrm{2},\mathrm{1},\mathrm{0}\right)\:,\mathrm{Q}\left(\mathrm{2},\mathrm{0},\mathrm{1}\right),\mathrm{P}\left(\mathrm{0},\mathrm{1},\mathrm{2}\right) \\ $$$$\:\begin{cases}{\overset{\rightarrow} {\mathrm{QR}}\:=\:\left(\mathrm{0},\mathrm{1},−\mathrm{1}\right)}\\{\overset{\rightarrow} {\mathrm{QP}}\:=\left(−\mathrm{2},\mathrm{1},\mathrm{1}\right)}\end{cases} \\ $$$$\:\Rightarrow\mathrm{cos}\:\mathrm{X}\:=\:\frac{\overset{\rightarrow} {\mathrm{QR}}\:.\overset{\rightarrow} {\mathrm{QP}}}{\mid\overset{\rightarrow} {\mathrm{QR}}\mid\:.\mid\overset{\rightarrow} {\mathrm{QP}}\mid}\: \\ $$$$\Rightarrow\:\mathrm{cos}\:\mathrm{X}=\frac{\mathrm{0}+\mathrm{1}−\mathrm{1}}{\:\sqrt{\mathrm{2}}.\sqrt{\mathrm{6}}}=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{X}\:=\:\mathrm{90}° \\ $$
Answered by mr W last updated on 22/Mar/23
say edge length of cube is 2.  qr=(√2)  qp=(√6)  qr^2 +qp^2 =2+6=8  pr=2(√2)  pr^2 =8  pr^2 =qr^2 +qp^2   ⇒Δpqr is right angled. ⇒x=90°
$${say}\:{edge}\:{length}\:{of}\:{cube}\:{is}\:\mathrm{2}. \\ $$$${qr}=\sqrt{\mathrm{2}} \\ $$$${qp}=\sqrt{\mathrm{6}} \\ $$$${qr}^{\mathrm{2}} +{qp}^{\mathrm{2}} =\mathrm{2}+\mathrm{6}=\mathrm{8} \\ $$$${pr}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${pr}^{\mathrm{2}} =\mathrm{8} \\ $$$${pr}^{\mathrm{2}} ={qr}^{\mathrm{2}} +{qp}^{\mathrm{2}} \\ $$$$\Rightarrow\Delta{pqr}\:{is}\:{right}\:{angled}.\:\Rightarrow{x}=\mathrm{90}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *