Menu Close

Question-189807




Question Number 189807 by normans last updated on 22/Mar/23
Answered by a.lgnaoui last updated on 22/Mar/23
   Angle entre verticale et p q(α=arcsin (1/2)=(π/6))  Angle entre Eq et qr est (π/4)  (π/6)+X+(π/4)=π⇒  X=((7π)/(12))
Angleentreverticaleetpq(α=arcsin12=π6)AngleentreEqetqrestπ4π6+X+π4=πX=7π12
Commented by a.lgnaoui last updated on 22/Mar/23
Answered by cortano12 last updated on 22/Mar/23
R(2,1,0) ,Q(2,0,1),P(0,1,2)    { ((QR^(→)  = (0,1,−1))),((QP^(→)  =(−2,1,1))) :}   ⇒cos X = ((QR^(→)  .QP^(→) )/(∣QR^(→) ∣ .∣QP^(→) ∣))   ⇒ cos X=((0+1−1)/( (√2).(√6)))= 0  ⇒X = 90°
R(2,1,0),Q(2,0,1),P(0,1,2){QR=(0,1,1)QP=(2,1,1)cosX=QR.QPQR.QPcosX=0+112.6=0X=90°
Answered by mr W last updated on 22/Mar/23
say edge length of cube is 2.  qr=(√2)  qp=(√6)  qr^2 +qp^2 =2+6=8  pr=2(√2)  pr^2 =8  pr^2 =qr^2 +qp^2   ⇒Δpqr is right angled. ⇒x=90°
sayedgelengthofcubeis2.qr=2qp=6qr2+qp2=2+6=8pr=22pr2=8pr2=qr2+qp2Δpqrisrightangled.x=90°

Leave a Reply

Your email address will not be published. Required fields are marked *