Menu Close

Question-189973




Question Number 189973 by mr W last updated on 25/Mar/23
Commented by mr W last updated on 25/Mar/23
find the area and side lengths of the  shaded triangle.
$${find}\:{the}\:{area}\:{and}\:{side}\:{lengths}\:{of}\:{the} \\ $$$${shaded}\:{triangle}. \\ $$
Commented by MJS_new last updated on 25/Mar/23
(1/7) of the area of ΔABC  I′ll show my work later
$$\frac{\mathrm{1}}{\mathrm{7}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta{ABC} \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{show}\:\mathrm{my}\:\mathrm{work}\:\mathrm{later} \\ $$
Commented by MJS_new last updated on 25/Mar/23
btw to a given triangle with sides a, b, c  there are 2 possible “inner” triangles with  sides o_k , p_k , q_k :  o_1 =((√(6a^2 −2b^2 +3c^2 ))/7); o_2 =((√(6a^2 +3b^2 −2c^2 ))/7)  [p_k , q_k  by cycling a, b, c]  it′s easy to solve these for a, b, c with given  o, p, q:  a_1 =(√(6o^2 +3p^2 −2q^2 )); a_2 =(√(6o^2 −2p^2 +3q^2 ))  [again b_k , c_k  by cycling o, p, q]  all these triangles share the same mass center
$$\mathrm{btw}\:\mathrm{to}\:\mathrm{a}\:\mathrm{given}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c} \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{2}\:\mathrm{possible}\:“\mathrm{inner}''\:\mathrm{triangles}\:\mathrm{with} \\ $$$$\mathrm{sides}\:{o}_{{k}} ,\:{p}_{{k}} ,\:{q}_{{k}} : \\ $$$${o}_{\mathrm{1}} =\frac{\sqrt{\mathrm{6}{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} +\mathrm{3}{c}^{\mathrm{2}} }}{\mathrm{7}};\:{o}_{\mathrm{2}} =\frac{\sqrt{\mathrm{6}{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} }}{\mathrm{7}} \\ $$$$\left[{p}_{{k}} ,\:{q}_{{k}} \:\mathrm{by}\:\mathrm{cycling}\:{a},\:{b},\:{c}\right] \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{these}\:\mathrm{for}\:{a},\:{b},\:{c}\:\mathrm{with}\:\mathrm{given} \\ $$$${o},\:{p},\:{q}: \\ $$$${a}_{\mathrm{1}} =\sqrt{\mathrm{6}{o}^{\mathrm{2}} +\mathrm{3}{p}^{\mathrm{2}} −\mathrm{2}{q}^{\mathrm{2}} };\:{a}_{\mathrm{2}} =\sqrt{\mathrm{6}{o}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} +\mathrm{3}{q}^{\mathrm{2}} } \\ $$$$\left[\mathrm{again}\:{b}_{{k}} ,\:{c}_{{k}} \:\mathrm{by}\:\mathrm{cycling}\:{o},\:{p},\:{q}\right] \\ $$$$\mathrm{all}\:\mathrm{these}\:\mathrm{triangles}\:\mathrm{share}\:\mathrm{the}\:\mathrm{same}\:\mathrm{mass}\:\mathrm{center} \\ $$
Commented by mr W last updated on 25/Mar/23
thanks sir!
$${thanks}\:{sir}! \\ $$
Answered by ajfour last updated on 25/Mar/23
B origin.  vectors  a, c, p  r_C =a  r_A =c  A ′=P  and so on..  r_Q =2p  r_R =a+2(2p−c)=c+((p−c)/2)  ⇒  2a+7p=5c  2Area_(sh) =∣p×{a+2(2p−c)}∣  ⇒ 98A_(sb) ^�   =(5c−2a)×{7a+4(5c−2a)−14c}  =(5c−2a)(6c−a)  =7∣a×c∣  ⇒  A_(sh) =((∣a×c∣)/(14))=(△_(ABC) /7)  ★    2△_(ABC) =∣a×c∣
$${B}\:{origin}. \\ $$$${vectors}\:\:{a},\:{c},\:{p} \\ $$$${r}_{{C}} ={a} \\ $$$${r}_{{A}} ={c} \\ $$$${A}\:'={P}\:\:{and}\:{so}\:{on}.. \\ $$$${r}_{{Q}} =\mathrm{2}{p} \\ $$$${r}_{{R}} ={a}+\mathrm{2}\left(\mathrm{2}{p}−{c}\right)={c}+\frac{{p}−{c}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{2}{a}+\mathrm{7}{p}=\mathrm{5}{c} \\ $$$$\mathrm{2}{Area}_{{sh}} =\mid{p}×\left\{{a}+\mathrm{2}\left(\mathrm{2}{p}−{c}\right)\right\}\mid \\ $$$$\Rightarrow\:\mathrm{98}\bar {{A}}_{{sb}} \\ $$$$=\left(\mathrm{5}{c}−\mathrm{2}{a}\right)×\left\{\mathrm{7}{a}+\mathrm{4}\left(\mathrm{5}{c}−\mathrm{2}{a}\right)−\mathrm{14}{c}\right\} \\ $$$$=\left(\mathrm{5}{c}−\mathrm{2}{a}\right)\left(\mathrm{6}{c}−{a}\right) \\ $$$$=\mathrm{7}\mid{a}×{c}\mid \\ $$$$\Rightarrow\:\:{A}_{{sh}} =\frac{\mid{a}×{c}\mid}{\mathrm{14}}=\frac{\bigtriangleup_{{ABC}} }{\mathrm{7}} \\ $$$$\bigstar\:\:\:\:\mathrm{2}\bigtriangleup_{{ABC}} =\mid{a}×{c}\mid \\ $$$$ \\ $$
Commented by mr W last updated on 25/Mar/23
thanks sir!
$${thanks}\:{sir}! \\ $$
Answered by mr W last updated on 25/Mar/23
Commented by mr W last updated on 25/Mar/23
we see all seven small triangles have  the same area, therefore   Δ_(A′B′C′) =(Δ_(ABC) /7).  say AC′=C′A′=p, BA′=A′B′=q, CB′=B′C′=r  cos β=−((4q^2 +r^2 −a^2 )/(4qr))=((q^2 +r^2 −p^2 )/(2qr))  −2p^2 +6q^2 +3r^2 =a^2    ...(i)  similarly  3p^2 −2q^2 +6r^2 =b^2    ...(ii)  6p^2 +3q^2 −2r^2 =c^2    ...(iii)  ⇒p^2 =((−2a^2 +3b^2 +6c^2 )/(49)) ⇒p=((√(−2a^2 +3b^2 +6c^2 ))/7)  ⇒q^2 =((6a^2 −2b^2 +3c^2 )/(49)) ⇒q=((√(6a^2 −2b^2 +3c^2 ))/7)  ⇒r^2 =((3a^2 +6b^2 −2c^2 )/(49)) ⇒r=((√(3a^2 +6b^2 −2c^2 ))/7)
$${we}\:{see}\:{all}\:{seven}\:{small}\:{triangles}\:{have} \\ $$$${the}\:{same}\:{area},\:{therefore}\: \\ $$$$\Delta_{{A}'{B}'{C}'} =\frac{\Delta_{{ABC}} }{\mathrm{7}}. \\ $$$${say}\:{AC}'={C}'{A}'={p},\:{BA}'={A}'{B}'={q},\:{CB}'={B}'{C}'={r} \\ $$$$\mathrm{cos}\:\beta=−\frac{\mathrm{4}{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{4}{qr}}=\frac{{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{2}{qr}} \\ $$$$−\mathrm{2}{p}^{\mathrm{2}} +\mathrm{6}{q}^{\mathrm{2}} +\mathrm{3}{r}^{\mathrm{2}} ={a}^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$${similarly} \\ $$$$\mathrm{3}{p}^{\mathrm{2}} −\mathrm{2}{q}^{\mathrm{2}} +\mathrm{6}{r}^{\mathrm{2}} ={b}^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\mathrm{6}{p}^{\mathrm{2}} +\mathrm{3}{q}^{\mathrm{2}} −\mathrm{2}{r}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\:\:…\left({iii}\right) \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\frac{−\mathrm{2}{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} +\mathrm{6}{c}^{\mathrm{2}} }{\mathrm{49}}\:\Rightarrow{p}=\frac{\sqrt{−\mathrm{2}{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} +\mathrm{6}{c}^{\mathrm{2}} }}{\mathrm{7}} \\ $$$$\Rightarrow{q}^{\mathrm{2}} =\frac{\mathrm{6}{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} +\mathrm{3}{c}^{\mathrm{2}} }{\mathrm{49}}\:\Rightarrow{q}=\frac{\sqrt{\mathrm{6}{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} +\mathrm{3}{c}^{\mathrm{2}} }}{\mathrm{7}} \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{6}{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} }{\mathrm{49}}\:\Rightarrow{r}=\frac{\sqrt{\mathrm{3}{a}^{\mathrm{2}} +\mathrm{6}{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} }}{\mathrm{7}} \\ $$
Answered by manxsol last updated on 26/Mar/23
2A=acsinx=bcsiny=basinz  2A_1 =2cbsiny=2(2A)=4A  2A_2 =2acsinx=2(2A)=4A  2A_3 =2basinz=2(2A)=4A  ((Δblue)/(Δtotal))=(A/(7A))=(1/7)
$$\mathrm{2}{A}={acsinx}={bcsiny}={basinz} \\ $$$$\mathrm{2}{A}_{\mathrm{1}} =\mathrm{2}{cbsiny}=\mathrm{2}\left(\mathrm{2}{A}\right)=\mathrm{4}{A} \\ $$$$\mathrm{2}{A}_{\mathrm{2}} =\mathrm{2}{acsinx}=\mathrm{2}\left(\mathrm{2}{A}\right)=\mathrm{4}{A} \\ $$$$\mathrm{2}{A}_{\mathrm{3}} =\mathrm{2}{basinz}=\mathrm{2}\left(\mathrm{2}{A}\right)=\mathrm{4}{A} \\ $$$$\frac{\Delta{blue}}{\Delta{total}}=\frac{{A}}{\mathrm{7}{A}}=\frac{\mathrm{1}}{\mathrm{7}} \\ $$
Commented by manxsol last updated on 26/Mar/23

Leave a Reply

Your email address will not be published. Required fields are marked *