Menu Close

Question-190076




Question Number 190076 by Spillover last updated on 26/Mar/23
Answered by som(math1967) last updated on 27/Mar/23
a.   f^l (x)= lim_(h→0)   (((1/(1+sin(x+h)))−(1/(1+sinx)))/h)   =lim_(h→0)  ((sinx−sin(x+h))/(h{1+sin(x+h)}(1+sinx)))  =lim_(h→0)  ((−2sin((h/2))cos(x+(h/2)))/(h(1+sinx){1+sin(x+h)}))  =−lim_(h→0) ((sin(h/2)cos(x+(h/2)))/((h/2)(1+sinx){1+sin(x+h)}))  =−((cosx)/((1+sinx)^2 ))   ∴f^l ((𝛑/3))= −((cos(𝛑/3))/((1+sin(𝛑/3))^2 ))  =−((1/2)/(((2+(√3))^2 )/4))=−(1/2)×(4/(7+4(√3)))  =−((2(7−4(√3)))/(49−48))=−14+8(√(3 ))  a=−14  , b=8,  c=(√3)
$${a}.\:\:\:{f}^{\boldsymbol{{l}}} \left({x}\right)=\:\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\:\frac{\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}+\boldsymbol{{h}}\right)}−\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{sinx}}}}{\boldsymbol{{h}}} \\ $$$$\:=\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{sinx}}−\boldsymbol{{sin}}\left(\boldsymbol{{x}}+\boldsymbol{{h}}\right)}{\boldsymbol{{h}}\left\{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}+\boldsymbol{{h}}\right)\right\}\left(\mathrm{1}+\boldsymbol{{sinx}}\right)} \\ $$$$=\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{−\mathrm{2}{sin}\left(\frac{{h}}{\mathrm{2}}\right){cos}\left({x}+\frac{{h}}{\mathrm{2}}\right)}{{h}\left(\mathrm{1}+\boldsymbol{{sinx}}\right)\left\{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}+\boldsymbol{{h}}\right)\right\}} \\ $$$$=−\underset{\boldsymbol{{h}}\rightarrow\mathrm{0}} {{lim}}\frac{\boldsymbol{{sin}}\frac{\boldsymbol{{h}}}{\mathrm{2}}\boldsymbol{{cos}}\left(\boldsymbol{{x}}+\frac{\boldsymbol{{h}}}{\mathrm{2}}\right)}{\frac{\boldsymbol{{h}}}{\mathrm{2}}\left(\mathrm{1}+\boldsymbol{{sinx}}\right)\left\{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}+\boldsymbol{{h}}\right)\right\}} \\ $$$$=−\frac{\boldsymbol{{cosx}}}{\left(\mathrm{1}+\boldsymbol{{sinx}}\right)^{\mathrm{2}} } \\ $$$$\:\therefore\boldsymbol{{f}}^{\boldsymbol{{l}}} \left(\frac{\boldsymbol{\pi}}{\mathrm{3}}\right)=\:−\frac{\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{3}}}{\left(\mathrm{1}+\boldsymbol{{sin}}\frac{\boldsymbol{\pi}}{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\frac{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{4}}}=−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}} \\ $$$$=−\frac{\mathrm{2}\left(\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\right)}{\mathrm{49}−\mathrm{48}}=−\mathrm{14}+\mathrm{8}\sqrt{\mathrm{3}\:} \\ $$$$\boldsymbol{{a}}=−\mathrm{14}\:\:,\:\boldsymbol{{b}}=\mathrm{8},\:\:\boldsymbol{{c}}=\sqrt{\mathrm{3}} \\ $$$$ \\ $$
Commented by Spillover last updated on 27/Mar/23
thanks
$$\mathrm{thanks} \\ $$
Answered by som(math1967) last updated on 27/Mar/23
b  x=a(θ+sinθ) y=a(1−cosθ)   (dx/dθ)= a(1+cosθ)    (dy/dθ)=asinθ  ⇒(dy/dx)=((sinθ)/((1+cosθ)))=((2sin(θ/2)cos(θ/2))/(2cos^2 (θ/2)))  = tan(θ/2)  (d^2 y/dx^2 )=(1/2)×sec^2 (θ/2)×(dθ/dx)  =(1/2)×sec^2 (θ/2)×(1/(a(1+cosθ)))  =(1/4)×((sec^2 (θ/2))/(2acos^2 (θ/2)))  =((a^(−1) sec^4 (θ/2))/4)
$${b}\:\:{x}={a}\left(\theta+{sin}\theta\right)\:{y}={a}\left(\mathrm{1}−{cos}\theta\right) \\ $$$$\:\frac{{dx}}{{d}\theta}=\:{a}\left(\mathrm{1}+{cos}\theta\right)\:\: \\ $$$$\frac{{dy}}{{d}\theta}={asin}\theta \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{{sin}\theta}{\left(\mathrm{1}+{cos}\theta\right)}=\frac{\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}}{\mathrm{2}{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$=\:{tan}\frac{\theta}{\mathrm{2}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}×{sec}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}×\frac{{d}\theta}{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{sec}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}×\frac{\mathrm{1}}{{a}\left(\mathrm{1}+{cos}\theta\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}×\frac{{sec}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}}{\mathrm{2}{acos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}} \\ $$$$=\frac{{a}^{−\mathrm{1}} {sec}^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}{\mathrm{4}} \\ $$
Commented by Spillover last updated on 27/Mar/23
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *