Question Number 190508 by 073 last updated on 04/Apr/23
Answered by Frix last updated on 04/Apr/23
$${t}=\mathrm{tan}\:{x} \\ $$$$\frac{{t}+\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{4}\left({t}+\mathrm{1}\right)^{\mathrm{2}} ={t}^{\mathrm{2}} +\mathrm{1} \\ $$$${t}^{\mathrm{2}} +\frac{\mathrm{8}{t}}{\mathrm{3}}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{tan}\:{x}\:={t}=−\frac{\mathrm{4}}{\mathrm{3}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\:\left[\mathrm{testing}\:\Rightarrow\:\mathrm{only}\:\mathrm{1}\:\mathrm{solution}\right] \\ $$
Commented by 073 last updated on 04/Apr/23
$$\mathrm{nice}\:\mathrm{solution} \\ $$
Answered by mehdee42 last updated on 04/Apr/23
$${solution}\:\:\mathrm{1} \\ $$$$\:{if}\:\:{tan}\frac{{x}}{\mathrm{2}}={u}\Rightarrow\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }+\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{3}{u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{1}=\mathrm{0}\Rightarrow{u}=\frac{\mathrm{2}\pm\sqrt{\mathrm{7}}}{\mathrm{3}} \\ $$$${tanx}=\frac{\mathrm{2}{u}}{\mathrm{1}−{u}^{\mathrm{2}} }\:\:\:\:\:…. \\ $$$${solution}\:\:\mathrm{2} \\ $$$$\mathrm{1}+\mathrm{2}{sinxcosx}=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow{sin}\mathrm{2}{x}=−\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow{cos}\mathrm{2}{x}=\pm\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$${tan}^{\mathrm{2}} {x}=\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{1}−{cos}\mathrm{2}{x}}\Rightarrow{tanx}=\pm…. \\ $$$$ \\ $$$$ \\ $$
Answered by cortano12 last updated on 04/Apr/23
$$\:\mathrm{Given}\:\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\mathrm{sin}\:\left(\mathrm{x}+\mathrm{45}°\right)=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\: \\ $$$$\:\mathrm{tan}\:\left(\mathrm{x}+\mathrm{45}°\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}}} \\ $$$$\:\Rightarrow\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}{\mathrm{1}−\mathrm{tan}\:\mathrm{x}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}}} \\ $$$$\Rightarrow\sqrt{\mathrm{7}}\:+\sqrt{\mathrm{7}}\:\mathrm{tan}\:\mathrm{x}\:=\:\mathrm{1}−\mathrm{tan}\:\mathrm{x} \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{x}\:=\:\frac{\mathrm{1}−\sqrt{\mathrm{7}}}{\mathrm{1}+\sqrt{\mathrm{7}}}\:=\:\frac{\mathrm{8}−\mathrm{2}\sqrt{\mathrm{7}}}{−\mathrm{6}} \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{x}\:=\:\frac{\sqrt{\mathrm{7}}−\mathrm{4}}{\mathrm{3}} \\ $$
Commented by mehdee42 last updated on 04/Apr/23
$${bravo} \\ $$
Commented by Spillover last updated on 05/Apr/23
$$\mathrm{great} \\ $$