Menu Close

Question-190521




Question Number 190521 by Rupesh123 last updated on 04/Apr/23
Answered by mehdee42 last updated on 04/Apr/23
8+88+888+...+888...8=8(((10−1)/9)+((10^2 −1)/9)+...+((10^n −1)/9))  =(8/9)(10+10^2 +...+10^n −n)=(8/9)(((10^(n+1) −10)/9)−n)  ⇒lim_(n→∞) ((81)/(10^n ))×(8/9)(((10^(n+1) −10)/9)−n)=80
$$\mathrm{8}+\mathrm{88}+\mathrm{888}+…+\mathrm{888}…\mathrm{8}=\mathrm{8}\left(\frac{\mathrm{10}−\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{10}^{\mathrm{2}} −\mathrm{1}}{\mathrm{9}}+…+\frac{\mathrm{10}^{{n}} −\mathrm{1}}{\mathrm{9}}\right) \\ $$$$=\frac{\mathrm{8}}{\mathrm{9}}\left(\mathrm{10}+\mathrm{10}^{\mathrm{2}} +…+\mathrm{10}^{{n}} −{n}\right)=\frac{\mathrm{8}}{\mathrm{9}}\left(\frac{\mathrm{10}^{{n}+\mathrm{1}} −\mathrm{10}}{\mathrm{9}}−{n}\right) \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} \frac{\mathrm{81}}{\mathrm{10}^{{n}} }×\frac{\mathrm{8}}{\mathrm{9}}\left(\frac{\mathrm{10}^{{n}+\mathrm{1}} −\mathrm{10}}{\mathrm{9}}−{n}\right)=\mathrm{80} \\ $$$$ \\ $$
Commented by Rupesh123 last updated on 04/Apr/23
Excellent, sir!

Leave a Reply

Your email address will not be published. Required fields are marked *