Question Number 190708 by mnjuly1970 last updated on 09/Apr/23
Answered by cortano12 last updated on 10/Apr/23
$$\:\mathrm{L}=\:\mathrm{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2x}−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}\right)−\mathrm{1}\right).\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }} \\ $$$$\:\mathrm{L}=\mathrm{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{8}.\left(\frac{\mathrm{sin}\:\mathrm{2x}−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}\right)}{\left(\mathrm{2x}\right)^{\mathrm{3}} }\right)} \\ $$$$\:\mathrm{let}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}\right)=\mathrm{u}\:\Rightarrow\mathrm{2x}=\mathrm{tan}\:\mathrm{u}\: \\ $$$$\:\mathrm{L}=\mathrm{e}^{\mathrm{8}.\:\underset{\mathrm{u}\rightarrow\mathrm{o}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:\left(\mathrm{tan}\:\mathrm{u}\right)−\mathrm{u}}{\mathrm{tan}\:^{\mathrm{3}} \mathrm{u}}\right)} \\ $$$$\:\mathrm{L}=\mathrm{e}^{\mathrm{8}.\:\underset{\mathrm{u}\rightarrow\mathrm{o}} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\mathrm{u}−\mathrm{u}}{\mathrm{u}^{\mathrm{3}} }\right)} \\ $$$$\:\mathrm{L}\:=\:\mathrm{e}^{\mathrm{8}/\mathrm{3}} \: \\ $$