Question Number 190812 by Mahliyo last updated on 12/Apr/23
Commented by Frix last updated on 12/Apr/23
$$\mathrm{Use}\:\mathrm{3}\:\mathrm{steps} \\ $$$$\mathrm{1}.\:{t}={x}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}.\:{u}=\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{3}.\:{v}=\mathrm{tan}\:\frac{{u}}{\mathrm{2}} \\ $$
Answered by ARUNG_Brandon_MBU last updated on 12/Apr/23
$${I}=\int\frac{{xdx}}{\left(\mathrm{1}+{x}\right)\sqrt{\mathrm{1}−{x}−{x}^{\mathrm{2}} }} \\ $$$$\:\:\:=\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}−{x}^{\mathrm{2}} }}−\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}−{x}−{x}^{\mathrm{2}} }},\:{t}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$\:\:\:=\int\frac{{dx}}{\:\sqrt{\frac{\mathrm{5}}{\mathrm{4}}−\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }}+\int\frac{{dt}}{{t}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}} \\ $$$$\:\:\:=\mathrm{arcsin}\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)+\int\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} +{t}−\mathrm{1}}} \\ $$$$\:\:\:=\mathrm{arcsin}\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)+\mathrm{argch}\left(\frac{\mathrm{2}{t}+\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)+{C} \\ $$$$\:\:\:=\mathrm{arcsin}\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)+\mathrm{ln}\mid\frac{{x}+\mathrm{3}}{\:\sqrt{\mathrm{5}}\left({x}+\mathrm{1}\right)}+\frac{\mathrm{2}\sqrt{\mathrm{1}−{x}−{x}^{\mathrm{2}} }}{\:\sqrt{\mathrm{5}}\left({x}+\mathrm{1}\right)}\mid+{C} \\ $$