Menu Close

Question-190902




Question Number 190902 by Spillover last updated on 13/Apr/23
Answered by mr W last updated on 13/Apr/23
(i)  (m_A +m_B )a=(m_B −m_A )g  ⇒a=(((m_B −m_A )g)/(m_B +m_A ))=(((0.7−0.3)×10)/(0.7+0.3))=4 m/s^2   T=m_B (g−a)=m_B (1−((m_B −m_A )/(m_B +m_A )))g=((2m_A m_B g)/(m_A +m_B ))     =((2×0.3×0.7×10)/(0.3+0.7))=4.2 N ✓  (ii)  v=at=1.6  ⇒t=((1.6)/4)=0.4 s  h=((at^2 )/2)=((4×0.4^2 )/2)=0.32 m  0.32+0.52=−1.6t+((gt^2 )/2)  5t^2 −1.6t−0.84=0  ⇒t=((1.6+(√(1.6^2 +4×5×0.84)))/(2×5))=0.6 s ✓
$$\left({i}\right) \\ $$$$\left({m}_{{A}} +{m}_{{B}} \right){a}=\left({m}_{{B}} −{m}_{{A}} \right){g} \\ $$$$\Rightarrow{a}=\frac{\left({m}_{{B}} −{m}_{{A}} \right){g}}{{m}_{{B}} +{m}_{{A}} }=\frac{\left(\mathrm{0}.\mathrm{7}−\mathrm{0}.\mathrm{3}\right)×\mathrm{10}}{\mathrm{0}.\mathrm{7}+\mathrm{0}.\mathrm{3}}=\mathrm{4}\:{m}/{s}^{\mathrm{2}} \\ $$$${T}={m}_{{B}} \left({g}−{a}\right)={m}_{{B}} \left(\mathrm{1}−\frac{{m}_{{B}} −{m}_{{A}} }{{m}_{{B}} +{m}_{{A}} }\right){g}=\frac{\mathrm{2}{m}_{{A}} {m}_{{B}} {g}}{{m}_{{A}} +{m}_{{B}} } \\ $$$$\:\:\:=\frac{\mathrm{2}×\mathrm{0}.\mathrm{3}×\mathrm{0}.\mathrm{7}×\mathrm{10}}{\mathrm{0}.\mathrm{3}+\mathrm{0}.\mathrm{7}}=\mathrm{4}.\mathrm{2}\:{N}\:\checkmark \\ $$$$\left({ii}\right) \\ $$$${v}={at}=\mathrm{1}.\mathrm{6} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}.\mathrm{6}}{\mathrm{4}}=\mathrm{0}.\mathrm{4}\:{s} \\ $$$${h}=\frac{{at}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{4}×\mathrm{0}.\mathrm{4}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0}.\mathrm{32}\:{m} \\ $$$$\mathrm{0}.\mathrm{32}+\mathrm{0}.\mathrm{52}=−\mathrm{1}.\mathrm{6}{t}+\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{5}{t}^{\mathrm{2}} −\mathrm{1}.\mathrm{6}{t}−\mathrm{0}.\mathrm{84}=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}.\mathrm{6}+\sqrt{\mathrm{1}.\mathrm{6}^{\mathrm{2}} +\mathrm{4}×\mathrm{5}×\mathrm{0}.\mathrm{84}}}{\mathrm{2}×\mathrm{5}}=\mathrm{0}.\mathrm{6}\:{s}\:\checkmark \\ $$
Commented by Spillover last updated on 14/Apr/23
nice solution.thanks
$${nice}\:{solution}.{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *