Menu Close

Question-191049




Question Number 191049 by Mingma last updated on 16/Apr/23
Commented by Mingma last updated on 17/Apr/23
Nice solution, sir!
Answered by aleks041103 last updated on 17/Apr/23
cos(sin(x))=Re(exp(i sin(x)))  ⇒cos(sin(x))exp(cos(x))=  =Re(exp(cos(x)+i sin(x)))=  =Re(e^e^(ix)  )  ⇒∫_0 ^( 2π) cos(sin(x))exp(cos(x))dx=  =Re(∫_0 ^( 2π) e^e^(ix)  dx)  ∫_0 ^( 2π) e^e^(ix)  dx=?  z=e^(ix) ⇒dz=i z dx ⇒ dx=−i(dz/z)  ⇒∫_0 ^( 2π) e^e^(ix)  dx=−i∮_Γ (e^z /z)dz  where Γ:∣z∣=1  By residue theorem:  ∮_Γ (e^z /z)dz=2πi Res(z=0)  Res(z=0)=lim_(z→0) (e^z /z)(z−0)=1⇒  ⇒∫_0 ^( 2π) e^e^(ix)  dx=−i(2πi)=2π  ⇒∫_0 ^( 2π) cos(sin(x))exp(cos(x))dx=2π
$${cos}\left({sin}\left({x}\right)\right)={Re}\left({exp}\left({i}\:{sin}\left({x}\right)\right)\right) \\ $$$$\Rightarrow{cos}\left({sin}\left({x}\right)\right){exp}\left({cos}\left({x}\right)\right)= \\ $$$$={Re}\left({exp}\left({cos}\left({x}\right)+{i}\:{sin}\left({x}\right)\right)\right)= \\ $$$$={Re}\left({e}^{{e}^{{ix}} } \right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {cos}\left({sin}\left({x}\right)\right){exp}\left({cos}\left({x}\right)\right){dx}= \\ $$$$={Re}\left(\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {e}^{{e}^{{ix}} } {dx}\right) \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {e}^{{e}^{{ix}} } {dx}=? \\ $$$${z}={e}^{{ix}} \Rightarrow{dz}={i}\:{z}\:{dx}\:\Rightarrow\:{dx}=−{i}\frac{{dz}}{{z}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {e}^{{e}^{{ix}} } {dx}=−{i}\oint_{\Gamma} \frac{{e}^{{z}} }{{z}}{dz} \\ $$$${where}\:\Gamma:\mid{z}\mid=\mathrm{1} \\ $$$${By}\:{residue}\:{theorem}: \\ $$$$\oint_{\Gamma} \frac{{e}^{{z}} }{{z}}{dz}=\mathrm{2}\pi{i}\:{Res}\left({z}=\mathrm{0}\right) \\ $$$${Res}\left({z}=\mathrm{0}\right)=\underset{{z}\rightarrow\mathrm{0}} {{lim}}\frac{{e}^{{z}} }{{z}}\left({z}−\mathrm{0}\right)=\mathrm{1}\Rightarrow \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {e}^{{e}^{{ix}} } {dx}=−{i}\left(\mathrm{2}\pi{i}\right)=\mathrm{2}\pi \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} {cos}\left({sin}\left({x}\right)\right){exp}\left({cos}\left({x}\right)\right){dx}=\mathrm{2}\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *