Menu Close

Question-191060




Question Number 191060 by Mingma last updated on 17/Apr/23
Answered by witcher3 last updated on 18/Apr/23
BS=a(d/b),BR=(d/b)c  AP=c(d/a),AQ=b(d/a)  CM=a.(d/c),NC=(d/c)b  c(1−(d/a))=BP,c(1−(d/b))=RA  PR=c((d/a)+(d/b)−1)  CQ=b(1−(d/a)),NA=b(1−(d/c)),NQ=b((d/a)+(d/c)−1)  pp′=(((d/a)+(d/b)−1)/(d/b)).((ad)/b)==((db+da−ab)/b)  p′q=((ad)/c).((b((d/a)+(d/c)−1))/((d/c)b))  =((dc+da−ac)/c)  pq=d=((dcb+dab−acb+dcb+dac−acb)/(bc))  d(cb+ab+cb)=2acb  d=((2acb)/(ab+bc+cb))=(2/(a^− +b^− +c^− ))
$$\mathrm{BS}=\mathrm{a}\frac{\mathrm{d}}{\mathrm{b}},\mathrm{BR}=\frac{\mathrm{d}}{\mathrm{b}}\mathrm{c} \\ $$$$\mathrm{AP}=\mathrm{c}\frac{\mathrm{d}}{\mathrm{a}},\mathrm{AQ}=\mathrm{b}\frac{\mathrm{d}}{\mathrm{a}} \\ $$$$\mathrm{CM}=\mathrm{a}.\frac{\mathrm{d}}{\mathrm{c}},\mathrm{NC}=\frac{\mathrm{d}}{\mathrm{c}}\mathrm{b} \\ $$$$\mathrm{c}\left(\mathrm{1}−\frac{\mathrm{d}}{\mathrm{a}}\right)=\mathrm{BP},\mathrm{c}\left(\mathrm{1}−\frac{\mathrm{d}}{\mathrm{b}}\right)=\mathrm{RA} \\ $$$$\mathrm{PR}=\mathrm{c}\left(\frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{d}}{\mathrm{b}}−\mathrm{1}\right) \\ $$$$\mathrm{CQ}=\mathrm{b}\left(\mathrm{1}−\frac{\mathrm{d}}{\mathrm{a}}\right),\mathrm{NA}=\mathrm{b}\left(\mathrm{1}−\frac{\mathrm{d}}{\mathrm{c}}\right),\mathrm{NQ}=\mathrm{b}\left(\frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{d}}{\mathrm{c}}−\mathrm{1}\right) \\ $$$$\mathrm{pp}'=\frac{\frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{d}}{\mathrm{b}}−\mathrm{1}}{\frac{\mathrm{d}}{\mathrm{b}}}.\frac{\mathrm{ad}}{\mathrm{b}}==\frac{\mathrm{db}+\mathrm{da}−\mathrm{ab}}{\mathrm{b}} \\ $$$$\mathrm{p}'\mathrm{q}=\frac{\mathrm{ad}}{\mathrm{c}}.\frac{\mathrm{b}\left(\frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{d}}{\mathrm{c}}−\mathrm{1}\right)}{\frac{\mathrm{d}}{\mathrm{c}}\mathrm{b}} \\ $$$$=\frac{\mathrm{dc}+\mathrm{da}−\mathrm{ac}}{\mathrm{c}} \\ $$$$\mathrm{pq}=\mathrm{d}=\frac{\mathrm{dcb}+\mathrm{dab}−\mathrm{acb}+\mathrm{dcb}+\mathrm{dac}−\mathrm{acb}}{\mathrm{bc}} \\ $$$$\mathrm{d}\left(\mathrm{cb}+\mathrm{ab}+\mathrm{cb}\right)=\mathrm{2acb} \\ $$$$\mathrm{d}=\frac{\mathrm{2acb}}{\mathrm{ab}+\mathrm{bc}+\mathrm{cb}}=\frac{\mathrm{2}}{\mathrm{a}^{−} +\mathrm{b}^{−} +\mathrm{c}^{−} } \\ $$$$ \\ $$
Commented by Mingma last updated on 18/Apr/23
Very nice work, sir!

Leave a Reply

Your email address will not be published. Required fields are marked *