Question Number 191168 by Mingma last updated on 19/Apr/23
Answered by mehdee42 last updated on 19/Apr/23
$${A}={lim}_{{n}\rightarrow\infty} \frac{\sqrt[{{n}}]{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left(\mathrm{2}{n}\right)}}{{n}}={lim}_{{n}\rightarrow\infty} \sqrt[{{n}}]{\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)…\left(\mathrm{2}{n}\right)}{{n}^{{n}} }} \\ $$$$\Rightarrow{lnA}={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\left[{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)+{ln}\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)+…+{ln}\left(\mathrm{1}+\frac{{n}}{{n}}\right)\right] \\ $$$$={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left(\mathrm{1}+\frac{{i}}{{n}}\right)=\underset{\mathrm{0}} {\int}^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$$=\left[\left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)−{x}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{2}{ln}\mathrm{2}−\mathrm{1}={ln}\frac{\mathrm{4}}{{e}}\Rightarrow{A}=\frac{\mathrm{4}}{{e}}\:\checkmark \\ $$
Commented by Mingma last updated on 19/Apr/23
Perfect