Menu Close

Question-191305




Question Number 191305 by Mingma last updated on 22/Apr/23
Commented by mr W last updated on 22/Apr/23
there is no unique solution. but there  is a r_(min) .
thereisnouniquesolution.butthereisarmin.
Answered by mr W last updated on 23/Apr/23
Commented by mr W last updated on 23/Apr/23
OA=a=12  OB=b=5  say P(p,r), Q(r,q)  p=r+2r cos θ  q=r+2r sin θ  M=mid point of PQ  M(((p+r)/2),((q+r)/2))=[(1+cos θ)r, (1+sin θ)r]  QM=(√3)r  x_R =(1+cos θ+(√3) sin θ)r  y_R =(1+sin θ+(√3) cos θ)r  eqn. of AB:  (x/a)+(y/b)=1 ⇒bx+ay−ab=0  distance from R to AB is r:  ((∣b(1+cos θ+(√3) sin θ)r+a(1+sin θ+(√3) cos θ)r−ab∣)/( (√(a^2 +b^2 ))))=r  r=((ab)/(a+b+(√(a^2 +b^2 ))+(a+(√3)b)sin θ+((√3)a+b)cos θ))  r=((ab)/(a+b+(√(a^2 +b^2 ))+2(√(a^2 +b^2 +(√3)ab)) sin (θ+tan^(−1) (((√3)a+b)/(a+(√3)b)))))  at θ+tan^(−1) (((√3)a+b)/(a+(√3)b))=(π/2), i.e. θ=(π/2)−tan^(−1) (((√3)a+b)/(a+(√3)b)) :  r_(min) =((ab)/(a+b+(√(a^2 +b^2 ))+2(√(a^2 +b^2 +(√3)ab))))  with a=12, b=5:  r_(min) =((30)/(15+(√(169+60(√3)))))≈0.952
OA=a=12OB=b=5sayP(p,r),Q(r,q)p=r+2rcosθq=r+2rsinθM=midpointofPQM(p+r2,q+r2)=[(1+cosθ)r,(1+sinθ)r]QM=3rxR=(1+cosθ+3sinθ)ryR=(1+sinθ+3cosθ)reqn.ofAB:xa+yb=1bx+ayab=0distancefromRtoABisr:b(1+cosθ+3sinθ)r+a(1+sinθ+3cosθ)raba2+b2=rr=aba+b+a2+b2+(a+3b)sinθ+(3a+b)cosθr=aba+b+a2+b2+2a2+b2+3absin(θ+tan13a+ba+3b)atθ+tan13a+ba+3b=π2,i.e.θ=π2tan13a+ba+3b:rmin=aba+b+a2+b2+2a2+b2+3abwitha=12,b=5:rmin=3015+169+6030.952
Commented by Mingma last updated on 23/Apr/23
Great Work, sir!
Commented by mr W last updated on 23/Apr/23
with r_(min) :
withrmin:
Commented by mr W last updated on 23/Apr/23
Commented by mr W last updated on 23/Apr/23
examples for other possibilities:
examplesforotherpossibilities:
Commented by mr W last updated on 23/Apr/23
Commented by mr W last updated on 23/Apr/23

Leave a Reply

Your email address will not be published. Required fields are marked *