Question Number 191305 by Mingma last updated on 22/Apr/23

Commented by mr W last updated on 22/Apr/23

Answered by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23
![OA=a=12 OB=b=5 say P(p,r), Q(r,q) p=r+2r cos θ q=r+2r sin θ M=mid point of PQ M(((p+r)/2),((q+r)/2))=[(1+cos θ)r, (1+sin θ)r] QM=(√3)r x_R =(1+cos θ+(√3) sin θ)r y_R =(1+sin θ+(√3) cos θ)r eqn. of AB: (x/a)+(y/b)=1 ⇒bx+ay−ab=0 distance from R to AB is r: ((∣b(1+cos θ+(√3) sin θ)r+a(1+sin θ+(√3) cos θ)r−ab∣)/( (√(a^2 +b^2 ))))=r r=((ab)/(a+b+(√(a^2 +b^2 ))+(a+(√3)b)sin θ+((√3)a+b)cos θ)) r=((ab)/(a+b+(√(a^2 +b^2 ))+2(√(a^2 +b^2 +(√3)ab)) sin (θ+tan^(−1) (((√3)a+b)/(a+(√3)b))))) at θ+tan^(−1) (((√3)a+b)/(a+(√3)b))=(π/2), i.e. θ=(π/2)−tan^(−1) (((√3)a+b)/(a+(√3)b)) : r_(min) =((ab)/(a+b+(√(a^2 +b^2 ))+2(√(a^2 +b^2 +(√3)ab)))) with a=12, b=5: r_(min) =((30)/(15+(√(169+60(√3)))))≈0.952](https://www.tinkutara.com/question/Q191319.png)
Commented by Mingma last updated on 23/Apr/23
Great Work, sir!
Commented by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23

Commented by mr W last updated on 23/Apr/23
